Signed-off-by: sairate <sairate@sina.cn>
This commit is contained in:
parent
7804c7eccc
commit
2dba979456
|
@ -22,5 +22,6 @@ $ mkdocs serve # 在本地启动服务器预览
|
|||
我们欢迎和鼓励所有人贡献自己的知识和经验!
|
||||
|
||||
- 在工单中提交需求
|
||||
- 联系我:sairate@sina.cn
|
||||
|
||||

|
||||
|
|
|
@ -5,78 +5,64 @@
|
|||
|
||||
**例如:**
|
||||
设有两个矩阵 \( A \) 和 \( B \),如下:
|
||||
\[ A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} \]
|
||||
$$
|
||||
A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}
|
||||
$$
|
||||
|
||||
**加法:**
|
||||
\[ A + B = \begin{pmatrix} 1+5 & 2+6 \\ 3+7 & 4+8 \end{pmatrix} = \begin{pmatrix} 6 & 8 \\ 10 & 12 \end{pmatrix} \]
|
||||
$$
|
||||
A + B = \begin{pmatrix} 1+5 & 2+6 \\ 3+7 & 4+8 \end{pmatrix} = \begin{pmatrix} 6 & 8 \\ 10 & 12 \end{pmatrix}
|
||||
$$
|
||||
|
||||
**减法:**
|
||||
\[ A - B = \begin{pmatrix} 1-5 & 2-6 \\ 3-7 & 4-8 \end{pmatrix} = \begin{pmatrix} -4 & -4 \\ -4 & -4 \end{pmatrix} \]
|
||||
$$
|
||||
A - B = \begin{pmatrix} 1-5 & 2-6 \\ 3-7 & 4-8 \end{pmatrix} = \begin{pmatrix} -4 & -4 \\ -4 & -4 \end{pmatrix}
|
||||
$$
|
||||
|
||||
### 2. 矩阵乘法
|
||||
矩阵乘法是矩阵运算中最常见的一种操作。矩阵 \( A \) 的列数必须等于矩阵 \( B \) 的行数。结果矩阵的维度为 \( A \) 的行数和 \( B \) 的列数。
|
||||
|
||||
**例如:**
|
||||
设有矩阵 \( A \) 和 \( B \),如下:
|
||||
\[ A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} \]
|
||||
$$
|
||||
A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}
|
||||
$$
|
||||
|
||||
**乘法:**
|
||||
\[ A \times B = \begin{pmatrix} 1\times5 + 2\times7 & 1\times6 + 2\times8 \\ 3\times5 + 4\times7 & 3\times6 + 4\times8 \end{pmatrix} = \begin{pmatrix} 19 & 22 \\ 43 & 50 \end{pmatrix} \]
|
||||
$$
|
||||
A \times B = \begin{pmatrix} 1\times5 + 2\times7 & 1\times6 + 2\times8 \\ 3\times5 + 4\times7 & 3\times6 + 4\times8 \end{pmatrix} = \begin{pmatrix} 19 & 22 \\ 43 & 50 \end{pmatrix}
|
||||
$$
|
||||
|
||||
### 3. 矩阵转置
|
||||
矩阵的转置是将矩阵的行和列互换。对于矩阵 \( A \) 的转置矩阵记作 \( A^T \)。
|
||||
|
||||
**例如:**
|
||||
设矩阵 \( A \) 如下:
|
||||
\[ A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \]
|
||||
$$
|
||||
A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}
|
||||
$$
|
||||
|
||||
**转置:**
|
||||
\[ A^T = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix} \]
|
||||
$$
|
||||
A^T = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}
|
||||
$$
|
||||
|
||||
### 4. 单位矩阵和逆矩阵
|
||||
- **单位矩阵** \( I \) 是一个对角线上全为1,其余元素为0的方阵。它在矩阵乘法中起着类似于数字1在数乘中的作用。
|
||||
|
||||
**例如:**
|
||||
\[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \]
|
||||
$$
|
||||
I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
|
||||
$$
|
||||
|
||||
- **逆矩阵** \( A^{-1} \) 是一个矩阵,使得 \( A \times A^{-1} = I \)。只有方阵(行数等于列数)并且行列式不为零的矩阵才有逆矩阵。
|
||||
|
||||
### 5. 矩阵行列式
|
||||
行列式是一个标量值,可以用于判断矩阵是否可逆。对于 \( 2 \times 2 \) 的矩阵 \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \),行列式 \( \det(A) \) 计算如下:
|
||||
\[ \det(A) = ad - bc \]
|
||||
$$
|
||||
\det(A) = ad - bc
|
||||
$$
|
||||
|
||||
如果行列式不为零,矩阵 \( A \) 可逆。
|
||||
|
||||
### 6. Python 中的矩阵运算
|
||||
在 Python 中,NumPy 是一个常用的库来进行矩阵运算。
|
||||
|
||||
```python
|
||||
import numpy as np
|
||||
|
||||
# 定义矩阵
|
||||
A = np.array([[1, 2], [3, 4]])
|
||||
B = np.array([[5, 6], [7, 8]])
|
||||
|
||||
# 矩阵加法
|
||||
C = A + B
|
||||
|
||||
# 矩阵乘法
|
||||
D = np.dot(A, B)
|
||||
|
||||
# 矩阵转置
|
||||
E = A.T
|
||||
|
||||
# 矩阵的行列式
|
||||
det_A = np.linalg.det(A)
|
||||
|
||||
# 矩阵的逆
|
||||
inv_A = np.linalg.inv(A)
|
||||
|
||||
print("矩阵加法结果:\n", C)
|
||||
print("矩阵乘法结果:\n", D)
|
||||
print("矩阵转置结果:\n", E)
|
||||
print("矩阵的行列式:", det_A)
|
||||
print("矩阵的逆:\n", inv_A)
|
||||
```
|
||||
|
||||
这些基本运算为许多复杂的线性代数问题打下了基础。如果你对更高级的矩阵运算或应用有兴趣,可以继续深入学习特征值分解、奇异值分解等内容。
|
||||
这些基本运算为许多复杂的线性代数问题打下了基础。如果你对更高级的矩阵运算或应用有兴趣,可以继续深入学习特征值分解、奇异值分解等内容。
|
||||
|
|
|
@ -1,11 +1,10 @@
|
|||
document$.subscribe(({ body }) => {
|
||||
renderMathInElement(body, {
|
||||
delimiters: [
|
||||
{ left: "$$", right: "$$", display: true },
|
||||
{ left: "$", right: "$", display: false },
|
||||
{ left: "\\(", right: "\\)", display: false },
|
||||
{ left: "\\[", right: "\\]", display: true },
|
||||
{ left: "\[", right: "\]", display: true }
|
||||
{ left: "$$", right: "$$", display: true }, // 用于块级显示的数学公式
|
||||
{ left: "$", right: "$", display: false }, // 用于行内显示的数学公式
|
||||
{ left: "\\(", right: "\\)", display: false }, // 行内数学公式的另一种表示法
|
||||
{ left: "\\[", right: "\\]", display: true } // 块级数学公式的另一种表示法
|
||||
],
|
||||
})
|
||||
})
|
||||
})
|
||||
|
|
|
@ -1,7 +1,16 @@
|
|||
// markdown_extensions:
|
||||
// - pymdownx.arithmatex:
|
||||
// generic: true
|
||||
//
|
||||
// extra_javascript:
|
||||
// - javascripts/mathjax.js
|
||||
// - https://unpkg.com/mathjax@3/es5/tex-mml-chtml.js
|
||||
window.MathJax = {
|
||||
tex: {
|
||||
inlineMath: [["\\(", "\\)"]],
|
||||
displayMath: [["\\[", "\\]"]],
|
||||
processEscapes: true,
|
||||
processEnvironments: true
|
||||
},
|
||||
options: {
|
||||
ignoreHtmlClass: ".*|",
|
||||
processHtmlClass: "arithmatex"
|
||||
}
|
||||
};
|
||||
|
||||
document$.subscribe(() => {
|
||||
MathJax.typesetPromise()
|
||||
})
|
|
@ -33,18 +33,30 @@ markdown_extensions:
|
|||
- pymdownx.arithmatex:
|
||||
generic: true
|
||||
|
||||
extra_javascript:
|
||||
- javascripts/katex.js
|
||||
- https://unpkg.com/katex@0/dist/katex.min.js
|
||||
- https://unpkg.com/katex@0/dist/contrib/auto-render.min.js
|
||||
|
||||
extra_css:
|
||||
- https://unpkg.com/katex@0/dist/katex.min.css
|
||||
- themes/css/custom.css
|
||||
- themes/css/simpleLightbox.min.css
|
||||
- themes/css/pied_piper.css
|
||||
- https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.16.9/katex.min.css
|
||||
|
||||
#markdown_extensions:
|
||||
# - pymdownx.arithmatex:
|
||||
# generic: true
|
||||
#
|
||||
#extra_javascript:
|
||||
# - javascripts/mathjax.js
|
||||
# - https://unpkg.com/mathjax@3/es5/tex-mml-chtml.js
|
||||
extra_javascript:
|
||||
- themes/js/custom.js
|
||||
- themes/js/simpleLightbox.min.js
|
||||
- themes/js/optionalConfig.js
|
||||
- themes/js/mermaidloader.js
|
||||
- themes/js/umlconvert.js
|
||||
- themes/js/mathjax.js
|
||||
- themes/js/katex.js
|
||||
- https://cdn.jsdelivr.net/npm/mermaid@10.6.1/dist/mermaid.min.js
|
||||
- https://cdnjs.cloudflare.com/ajax/libs/flowchart/1.17.1/flowchart.min.js
|
||||
- https://cdnjs.cloudflare.com/ajax/libs/raphael/2.3.0/raphael.min.js
|
||||
- https://cdnjs.cloudflare.com/ajax/libs/underscore.js/1.13.6/underscore-min.js
|
||||
- https://cdn.jsdelivr.net/npm/@mermaid-js/mermaid-mindmap@9.3.0/dist/diagram-definition.0faef4c2.min.js
|
||||
- https://cdn.jsdelivr.net/npm/markdown-it-plantuml@1.4.1/index.min.js
|
||||
- https://cdnjs.cloudflare.com/ajax/libs/webfont/1.6.28/webfontloader.js
|
||||
- https://cdnjs.cloudflare.com/ajax/libs/mathjax/3.2.0/es5/tex-mml-chtml.js
|
||||
- https://cdnjs.cloudflare.com/ajax/libs/mathjax/3.2.0/es5/tex-chtml.js
|
||||
- https://cdnjs.cloudflare.com/ajax/libs/mathjax/3.2.0/es5/tex-chtml-full.js
|
||||
- https://cdnjs.cloudflare.com/ajax/libs/mathjax/3.2.0/es5/tex-svg-full.js
|
||||
- https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.16.9/katex.min.js
|
||||
- https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.16.9/contrib/auto-render.min.js
|
Loading…
Reference in New Issue