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Praise	for	Effective	Python

“Each	item	in	Slatkin’s	Effective	Python	teaches	a	self-contained	lesson	with	its
own	source	code.		This	makes	the	book	random-access:	Items	are	easy	to	browse
and	study	in	whatever	order	the	reader	needs.	I	will	be	recommending	Effective
Python	to	students	as	an	admirably	compact	source	of	mainstream	advice	on	a
very	broad	range	of	topics	for	the	intermediate	Python	programmer.”

—Brandon	Rhodes,	software	engineer	at	Dropbox	and	chair	of	PyCon	2016-2017

“I’ve	been	programming	in	Python	for	years	and	thought	I	knew	it	pretty	well.
Thanks	to	this	treasure	trove	of	tips	and	techniques,	I	realize	there’s	so	much	more
I	could	be	doing	with	my	Python	code	to	make	it	faster	(e.g.,	using	built-in	data
structures),	easier	to	read	(e.g.,	enforcing	keyword-only	arguments),	and	much
more	Pythonic	(e.g.,	using	zip	to	iterate	over	lists	in	parallel).”

—Pamela	Fox,	educationeer,	Khan	Academy

“If	I	had	this	book	when	I	first	switched	from	Java	to	Python,	it	would	have	saved
me	many	months	of	repeated	code	rewrites,	which	happened	each	time	I	realized	I
was	doing	particular	things	‘non-Pythonically.’	This	book	collects	the	vast
majority	of	basic	Python	‘must-knows’	into	one	place,	eliminating	the	need	to
stumble	upon	them	one-by-one	over	the	course	of	months	or	years.	The	scope	of
the	book	is	impressive,	starting	with	the	importance	of	PEP8	as	well	as	that	of
major	Python	idioms,	then	reaching	through	function,	method	and	class	design,
effective	standard	library	use,	quality	API	design,	testing,	and	performance
measurement—this	book	really	has	it	all.		A	fantastic	introduction	to	what	it	really
means	to	be	a	Python	programmer	for	both	the	novice	and	the	experienced
developer.”

—Mike	Bayer,	creator	of	SQLAlchemy

“Effective	Python	will	take	your	Python	skills	to	the	next	level	with	clear
guidelines	for	improving	Python	code	style	and	function.”

—Leah	Culver,	developer	advocate,	Dropbox

“This	book	is	an	exceptionally	great	resource	for	seasoned	developers	in	other
languages	who	are	looking	to	quickly	pick	up	Python	and	move	beyond	the	basic
language	constructs	into	more	Pythonic	code.	The	organization	of	the	book	is
clear,	concise,	and	easy	to	digest,	and	each	item	and	chapter	can	stand	on	its	own
as	a	meditation	on	a	particular	topic.	The	book	covers	the	breadth	of	language
constructs	in	pure	Python	without	confusing	the	reader	with	the	complexities	of
the	broader	Python	ecosystem.	For	more	seasoned	developers	the	book	provides
in-depth	examples	of	language	constructs	they	may	not	have	previously
encountered,	and	provides	examples	of	less	commonly	used	language	features.	It
is	clear	that	the	author	is	exceptionally	facile	with	Python,	and	he	uses	his
professional	experience	to	alert	the	reader	to	common	subtle	bugs	and	common
failure	modes.	Furthermore,	the	book	does	an	excellent	job	of	pointing	out



subtleties	between	Python	2.X	and	Python	3.X	and	could	serve	as	a	refresher
course	as	one	transitions	between	variants	of	Python.”

—Katherine	Scott,	software	lead,	Tempo	Automation

“This	is	a	great	book	for	both	novice	and	experienced	programmers.	The	code
examples	and	explanations	are	well	thought	out	and	explained	concisely	and
thoroughly.”

—C.	Titus	Brown,	associate	professor,	UC	Davis

“This	is	an	immensely	useful	resource	for	advanced	Python	usage	and	building
cleaner,	more	maintainable	software.	Anyone	looking	to	take	their	Python	skills	to
the	next	level	would	benefit	from	putting	the	book’s	advice	into	practice.”

—Wes	McKinney,	creator	of	pandas;	author	of	Python	for	Data	Analysis;	and
software	engineer	at	Cloudera
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Preface

The	Python	programming	language	has	unique	strengths	and	charms	that	can	be	hard	to
grasp.	Many	programmers	familiar	with	other	languages	often	approach	Python	from	a
limited	mindset	instead	of	embracing	its	full	expressivity.	Some	programmers	go	too	far	in
the	other	direction,	overusing	Python	features	that	can	cause	big	problems	later.

This	book	provides	insight	into	the	Pythonic	way	of	writing	programs:	the	best	way	to	use
Python.	It	builds	on	a	fundamental	understanding	of	the	language	that	I	assume	you
already	have.	Novice	programmers	will	learn	the	best	practices	of	Python’s	capabilities.
Experienced	programmers	will	learn	how	to	embrace	the	strangeness	of	a	new	tool	with
confidence.

My	goal	is	to	prepare	you	to	make	a	big	impact	with	Python.

What	This	Book	Covers
Each	chapter	in	this	book	contains	a	broad	but	related	set	of	items.	Feel	free	to	jump
between	items	and	follow	your	interest.	Each	item	contains	concise	and	specific	guidance
explaining	how	you	can	write	Python	programs	more	effectively.	Items	include	advice	on
what	to	do,	what	to	avoid,	how	to	strike	the	right	balance,	and	why	this	is	the	best	choice.

The	items	in	this	book	are	for	Python	3	and	Python	2	programmers	alike	(see	Item	1:
“Know	Which	Version	of	Python	You’re	Using”).	Programmers	using	alternative	runtimes
like	Jython,	IronPython,	or	PyPy	should	also	find	the	majority	of	items	to	be	applicable.

Chapter	1:	Pythonic	Thinking
The	Python	community	has	come	to	use	the	adjective	Pythonic	to	describe	code	that
follows	a	particular	style.	The	idioms	of	Python	have	emerged	over	time	through
experience	using	the	language	and	working	with	others.	This	chapter	covers	the	best	way
to	do	the	most	common	things	in	Python.

Chapter	2:	Functions
Functions	in	Python	have	a	variety	of	extra	features	that	make	a	programmer’s	life	easier.
Some	are	similar	to	capabilities	in	other	programming	languages,	but	many	are	unique	to
Python.	This	chapter	covers	how	to	use	functions	to	clarify	intention,	promote	reuse,	and
reduce	bugs.

Chapter	3:	Classes	and	Inheritance
Python	is	an	object-oriented	language.	Getting	things	done	in	Python	often	requires
writing	new	classes	and	defining	how	they	interact	through	their	interfaces	and
hierarchies.	This	chapter	covers	how	to	use	classes	and	inheritance	to	express	your
intended	behaviors	with	objects.



Chapter	4:	Metaclasses	and	Attributes
Metaclasses	and	dynamic	attributes	are	powerful	Python	features.	However,	they	also
enable	you	to	implement	extremely	bizarre	and	unexpected	behaviors.	This	chapter	covers
the	common	idioms	for	using	these	mechanisms	to	ensure	that	you	follow	the	rule	of	least
surprise.

Chapter	5:	Concurrency	and	Parallelism
Python	makes	it	easy	to	write	concurrent	programs	that	do	many	different	things
seemingly	at	the	same	time.	Python	can	also	be	used	to	do	parallel	work	through	system
calls,	subprocesses,	and	C-extensions.	This	chapter	covers	how	to	best	utilize	Python	in
these	subtly	different	situations.

Chapter	6:	Built-in	Modules
Python	is	installed	with	many	of	the	important	modules	that	you’ll	need	to	write	programs.
These	standard	packages	are	so	closely	intertwined	with	idiomatic	Python	that	they	may	as
well	be	part	of	the	language	specification.	This	chapter	covers	the	essential	built-in
modules.

Chapter	7:	Collaboration
Collaborating	on	Python	programs	requires	you	to	be	deliberate	about	how	you	write	your
code.	Even	if	you’re	working	alone,	you’ll	want	to	understand	how	to	use	modules	written
by	others.	This	chapter	covers	the	standard	tools	and	best	practices	that	enable	people	to
work	together	on	Python	programs.

Chapter	8:	Production
Python	has	facilities	for	adapting	to	multiple	deployment	environments.	It	also	has	built-in
modules	that	aid	in	hardening	your	programs	and	making	them	bulletproof.	This	chapter
covers	how	to	use	Python	to	debug,	optimize,	and	test	your	programs	to	maximize	quality
and	performance	at	runtime.

Conventions	Used	in	This	Book
Python	code	snippets	in	this	book	are	in	monospace	font	and	have	syntax
highlighting.	I	take	some	artistic	license	with	the	Python	style	guide	to	make	the	code
examples	better	fit	the	format	of	a	book	or	to	highlight	the	most	important	parts.	When
lines	are	long,	I	use	 	characters	to	indicate	that	they	wrap.	I	truncate	snippets	with
ellipses	comments	(#…)	to	indicate	regions	where	code	exists	that	isn’t	essential	for
expressing	the	point.	I’ve	also	left	out	embedded	documentation	to	reduce	the	size	of	code
examples.	I	strongly	suggest	that	you	don’t	do	this	in	your	projects;	instead,	you	should
follow	the	style	guide	(see	Item	2:	“Follow	the	PEP	8	Style	Guide”)	and	write
documentation	(see	Item	49:	“Write	Docstrings	for	Every	Function,	Class,	and	Module”).

Most	code	snippets	in	this	book	are	accompanied	by	the	corresponding	output	from



running	the	code.	When	I	say	“output,”	I	mean	console	or	terminal	output:	what	you	see
when	running	the	Python	program	in	an	interactive	interpreter.	Output	sections	are	in
monospace	font	and	are	preceded	by	a	>>>	line	(the	Python	interactive	prompt).	The	idea
is	that	you	could	type	the	code	snippets	into	a	Python	shell	and	reproduce	the	expected
output.

Finally,	there	are	some	other	sections	in	monospace	font	that	are	not	preceded	by	a	>>>
line.	These	represent	the	output	of	running	programs	besides	the	Python	interpreter.	These
examples	often	begin	with	$	characters	to	indicate	that	I’m	running	programs	from	a
command-line	shell	like	Bash.

Where	to	Get	the	Code	and	Errata
It’s	useful	to	view	some	of	the	examples	in	this	book	as	whole	programs	without
interleaved	prose.	This	also	gives	you	a	chance	to	tinker	with	the	code	yourself	and
understand	why	the	program	works	as	described.	You	can	find	the	source	code	for	all	code
snippets	in	this	book	on	the	book’s	website	(http://www.effectivepython.com).	Any	errors
found	in	the	book	will	have	corrections	posted	on	the	website.

http://www.effectivepython.com
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1.	Pythonic	Thinking

The	idioms	of	a	programming	language	are	defined	by	its	users.	Over	the	years,	the
Python	community	has	come	to	use	the	adjective	Pythonic	to	describe	code	that	follows	a
particular	style.	The	Pythonic	style	isn’t	regimented	or	enforced	by	the	compiler.	It	has
emerged	over	time	through	experience	using	the	language	and	working	with	others.
Python	programmers	prefer	to	be	explicit,	to	choose	simple	over	complex,	and	to
maximize	readability	(type	import	this).

Programmers	familiar	with	other	languages	may	try	to	write	Python	as	if	it’s	C++,	Java,	or
whatever	they	know	best.	New	programmers	may	still	be	getting	comfortable	with	the	vast
range	of	concepts	expressible	in	Python.	It’s	important	for	everyone	to	know	the	best—the
Pythonic—way	to	do	the	most	common	things	in	Python.	These	patterns	will	affect	every
program	you	write.

Item	1:	Know	Which	Version	of	Python	You’re	Using
Throughout	this	book,	the	majority	of	example	code	is	in	the	syntax	of	Python	3.4
(released	March	17,	2014).	This	book	also	provides	some	examples	in	the	syntax	of
Python	2.7	(released	July	3,	2010)	to	highlight	important	differences.	Most	of	my	advice
applies	to	all	of	the	popular	Python	runtimes:	CPython,	Jython,	IronPython,	PyPy,	etc.

Many	computers	come	with	multiple	versions	of	the	standard	CPython	runtime
preinstalled.	However,	the	default	meaning	of	python	on	the	command-line	may	not	be
clear.	python	is	usually	an	alias	for	python2.7,	but	it	can	sometimes	be	an	alias	for
older	versions	like	python2.6	or	python2.5.	To	find	out	exactly	which	version	of
Python	you’re	using,	you	can	use	the	--version	flag.

$	python	—version

Python	2.7.8

Python	3	is	usually	available	under	the	name	python3.
$	python3	—version

Python	3.4.2

You	can	also	figure	out	the	version	of	Python	you’re	using	at	runtime	by	inspecting	values
in	the	sys	built-in	module.
Click	here	to	view	code	image

import	sys

print(sys.version_info)

print(sys.version)

>>>

sys.version_info(major=3,	minor=4,	micro=2,	releaselevel=‘final’,	serial=0)

3.4.2	(default,	Oct	19	2014,	17:52:17)

[GCC	4.2.1	Compatible	Apple	LLVM	6.0	(clang-600.0.51)]

Python	2	and	Python	3	are	both	actively	maintained	by	the	Python	community.
Development	on	Python	2	is	frozen	beyond	bug	fixes,	security	improvements,	and
backports	to	ease	the	transition	from	Python	2	to	Python	3.	Helpful	tools	like	the	2to3



and	six	exist	to	make	it	easier	to	adopt	Python	3	going	forward.

Python	3	is	constantly	getting	new	features	and	improvements	that	will	never	be	added	to
Python	2.	As	of	the	writing	of	this	book,	the	majority	of	Python’s	most	common	open
source	libraries	are	compatible	with	Python	3.	I	strongly	encourage	you	to	use	Python	3
for	your	next	Python	project.

Things	to	Remember
	There	are	two	major	versions	of	Python	still	in	active	use:	Python	2	and	Python	3.

	There	are	multiple	popular	runtimes	for	Python:	CPython,	Jython,	IronPython,	PyPy,
etc.

	Be	sure	that	the	command-line	for	running	Python	on	your	system	is	the	version	you
expect	it	to	be.

	Prefer	Python	3	for	your	next	project	because	that	is	the	primary	focus	of	the	Python
community.

Item	2:	Follow	the	PEP	8	Style	Guide
Python	Enhancement	Proposal	#8,	otherwise	known	as	PEP	8,	is	the	style	guide	for	how	to
format	Python	code.	You	are	welcome	to	write	Python	code	however	you	want,	as	long	as
it	has	valid	syntax.	However,	using	a	consistent	style	makes	your	code	more	approachable
and	easier	to	read.	Sharing	a	common	style	with	other	Python	programmers	in	the	larger
community	facilitates	collaboration	on	projects.	But	even	if	you	are	the	only	one	who	will
ever	read	your	code,	following	the	style	guide	will	make	it	easier	to	change	things	later.

PEP	8	has	a	wealth	of	details	about	how	to	write	clear	Python	code.	It	continues	to	be
updated	as	the	Python	language	evolves.	It’s	worth	reading	the	whole	guide	online
(http://www.python.org/dev/peps/pep-0008/).	Here	are	a	few	rules	you	should	be	sure	to
follow:

Whitespace:	In	Python,	whitespace	is	syntactically	significant.	Python	programmers
are	especially	sensitive	to	the	effects	of	whitespace	on	code	clarity.

•	Use	spaces	instead	of	tabs	for	indentation.

•	Use	four	spaces	for	each	level	of	syntactically	significant	indenting.

•	Lines	should	be	79	characters	in	length	or	less.

•	Continuations	of	long	expressions	onto	additional	lines	should	be	indented	by	four
extra	spaces	from	their	normal	indentation	level.

•	In	a	file,	functions	and	classes	should	be	separated	by	two	blank	lines.

•	In	a	class,	methods	should	be	separated	by	one	blank	line.

•	Don’t	put	spaces	around	list	indexes,	function	calls,	or	keyword	argument
assignments.

•	Put	one—and	only	one—space	before	and	after	variable	assignments.

http://www.python.org/dev/peps/pep-0008/


Naming:	PEP	8	suggests	unique	styles	of	naming	for	different	parts	in	the	language.
This	makes	it	easy	to	distinguish	which	type	corresponds	to	each	name	when	reading
code.

•	Functions,	variables,	and	attributes	should	be	in	lowercase_underscore
format.

•	Protected	instance	attributes	should	be	in	_leading_underscore	format.

•	Private	instance	attributes	should	be	in	__double_leading_underscore
format.

•	Classes	and	exceptions	should	be	in	CapitalizedWord	format.

•	Module-level	constants	should	be	in	ALL_CAPS	format.

•	Instance	methods	in	classes	should	use	self	as	the	name	of	the	first	parameter
(which	refers	to	the	object).

•	Class	methods	should	use	cls	as	the	name	of	the	first	parameter	(which	refers	to
the	class).

Expressions	and	Statements:	The	Zen	of	Python	states:	“There	should	be	one—and
preferably	only	one—obvious	way	to	do	it.”	PEP	8	attempts	to	codify	this	style	in	its
guidance	for	expressions	and	statements.

•	Use	inline	negation	(if	a	is	not	b)	instead	of	negation	of	positive	expressions
(if	not	a	is	b).

•	Don’t	check	for	empty	values	(like	[]	or	'')	by	checking	the	length	(if
len(somelist)	==	0).	Use	if	not	somelist	and	assume	empty	values
implicitly	evaluate	to	False.

•	The	same	thing	goes	for	non-empty	values	(like	[1]	or	'hi').	The	statement	if
somelist	is	implicitly	True	for	non-empty	values.

•	Avoid	single-line	if	statements,	for	and	while	loops,	and	except	compound
statements.	Spread	these	over	multiple	lines	for	clarity.

•	Always	put	import	statements	at	the	top	of	a	file.

•	Always	use	absolute	names	for	modules	when	importing	them,	not	names	relative	to
the	current	module’s	own	path.	For	example,	to	import	the	foo	module	from	the
bar	package,	you	should	do	from	bar	import	foo,	not	just	import	foo.

•	If	you	must	do	relative	imports,	use	the	explicit	syntax	from	.	import	foo.

•	Imports	should	be	in	sections	in	the	following	order:	standard	library	modules,	third-
party	modules,	your	own	modules.	Each	subsection	should	have	imports	in
alphabetical	order.



Note

The	Pylint	tool	(http://www.pylint.org/)	is	a	popular	static	analyzer	for	Python
source	code.	Pylint	provides	automated	enforcement	of	the	PEP	8	style	guide	and
detects	many	other	types	of	common	errors	in	Python	programs.

Things	to	Remember
	Always	follow	the	PEP	8	style	guide	when	writing	Python	code.

	Sharing	a	common	style	with	the	larger	Python	community	facilitates	collaboration
with	others.

	Using	a	consistent	style	makes	it	easier	to	modify	your	own	code	later.

Item	3:	Know	the	Differences	Between	bytes,	str,	and
unicode

In	Python	3,	there	are	two	types	that	represent	sequences	of	characters:	bytes	and	str.
Instances	of	bytes	contain	raw	8-bit	values.	Instances	of	str	contain	Unicode
characters.

In	Python	2,	there	are	two	types	that	represent	sequences	of	characters:	str	and
unicode.	In	contrast	to	Python	3,	instances	of	str	contain	raw	8-bit	values.	Instances	of
unicode	contain	Unicode	characters.

There	are	many	ways	to	represent	Unicode	characters	as	binary	data	(raw	8-bit	values).
The	most	common	encoding	is	UTF-8.	Importantly,	str	instances	in	Python	3	and
unicode	instances	in	Python	2	do	not	have	an	associated	binary	encoding.	To	convert
Unicode	characters	to	binary	data,	you	must	use	the	encode	method.	To	convert	binary
data	to	Unicode	characters,	you	must	use	the	decode	method.

When	you’re	writing	Python	programs,	it’s	important	to	do	encoding	and	decoding	of
Unicode	at	the	furthest	boundary	of	your	interfaces.	The	core	of	your	program	should	use
Unicode	character	types	(str	in	Python	3,	unicode	in	Python	2)	and	should	not	assume
anything	about	character	encodings.	This	approach	allows	you	to	be	very	accepting	of
alternative	text	encodings	(such	as	Latin-1,	Shift	JIS,	and	Big5)	while	being	strict	about
your	output	text	encoding	(ideally,	UTF-8).

The	split	between	character	types	leads	to	two	common	situations	in	Python	code:

	You	want	to	operate	on	raw	8-bit	values	that	are	UTF-8-encoded	characters	(or	some
other	encoding).

	You	want	to	operate	on	Unicode	characters	that	have	no	specific	encoding.

You’ll	often	need	two	helper	functions	to	convert	between	these	two	cases	and	to	ensure
that	the	type	of	input	values	matches	your	code’s	expectations.

In	Python	3,	you’ll	need	one	method	that	takes	a	str	or	bytes	and	always	returns	a
str.

http://www.pylint.org/


Click	here	to	view	code	image

def	to_str(bytes_or_str):

				if	isinstance(bytes_or_str,	bytes):

								value	=	bytes_or_str.decode(‘utf-8’)

				else:

								value	=	bytes_or_str

				return	value		#	Instance	of	str

You’ll	need	another	method	that	takes	a	str	or	bytes	and	always	returns	a	bytes.
Click	here	to	view	code	image

def	to_bytes(bytes_or_str):

				if	isinstance(bytes_or_str,	str):

								value	=	bytes_or_str.encode(‘utf-8’)

				else:

								value	=	bytes_or_str

				return	value		#	Instance	of	bytes

In	Python	2,	you’ll	need	one	method	that	takes	a	str	or	unicode	and	always	returns	a
unicode.
Click	here	to	view	code	image

#	Python	2

def	to_unicode(unicode_or_str):

				if	isinstance(unicode_or_str,	str):

								value	=	unicode_or_str.decode(‘utf-8’)

				else:

								value	=	unicode_or_str

				return	value		#	Instance	of	unicode

You’ll	need	another	method	that	takes	str	or	unicode	and	always	returns	a	str.
Click	here	to	view	code	image

#	Python	2

def	to_str(unicode_or_str):

				if	isinstance(unicode_or_str,	unicode):

								value	=	unicode_or_str.encode(‘utf-8’)

				else:

								value	=	unicode_or_str

				return	value		#	Instance	of	str

There	are	two	big	gotchas	when	dealing	with	raw	8-bit	values	and	Unicode	characters	in
Python.

The	first	issue	is	that	in	Python	2,	unicode	and	str	instances	seem	to	be	the	same	type
when	a	str	only	contains	7-bit	ASCII	characters.

	You	can	combine	such	a	str	and	unicode	together	using	the	+	operator.

	You	can	compare	such	str	and	unicode	instances	using	equality	and	inequality
operators.

	You	can	use	unicode	instances	for	format	strings	like	'%s'.

All	of	this	behavior	means	that	you	can	often	pass	a	str	or	unicode	instance	to	a
function	expecting	one	or	the	other	and	things	will	just	work	(as	long	as	you’re	only
dealing	with	7-bit	ASCII).	In	Python	3,	bytes	and	str	instances	are	never	equivalent—
not	even	the	empty	string—so	you	must	be	more	deliberate	about	the	types	of	character



sequences	that	you’re	passing	around.

The	second	issue	is	that	in	Python	3,	operations	involving	file	handles	(returned	by	the
open	built-in	function)	default	to	UTF-8	encoding.	In	Python	2,	file	operations	default	to
binary	encoding.	This	causes	surprising	failures,	especially	for	programmers	accustomed
to	Python	2.

For	example,	say	you	want	to	write	some	random	binary	data	to	a	file.	In	Python	2,	this
works.	In	Python	3,	this	breaks.
Click	here	to	view	code	image

with	open(‘/tmp/random.bin’,	‘w’)	as	f:

				f.write(os.urandom(10))

>>>

TypeError:	must	be	str,	not	bytes

The	cause	of	this	exception	is	the	new	encoding	argument	for	open	that	was	added	in
Python	3.	This	parameter	defaults	to	'utf-8'.	That	makes	read	and	write	operations
on	file	handles	expect	str	instances	containing	Unicode	characters	instead	of	bytes
instances	containing	binary	data.

To	make	this	work	properly,	you	must	indicate	that	the	data	is	being	opened	in	write
binary	mode	('wb')	instead	of	write	character	mode	('w').	Here,	I	use	open	in	a	way
that	works	correctly	in	Python	2	and	Python	3:
Click	here	to	view	code	image

with	open(‘/tmp/random.bin’,	‘wb’)	as	f:

				f.write(os.urandom(10))

This	problem	also	exists	for	reading	data	from	files.	The	solution	is	the	same:	Indicate
binary	mode	by	using	'rb'	instead	of	'r'	when	opening	a	file.

Things	to	Remember
	In	Python	3,	bytes	contains	sequences	of	8-bit	values,	str	contains	sequences	of
Unicode	characters.	bytes	and	str	instances	can’t	be	used	together	with	operators
(like	>	or	+).

	In	Python	2,	str	contains	sequences	of	8-bit	values,	unicode	contains	sequences
of	Unicode	characters.	str	and	unicode	can	be	used	together	with	operators	if
the	str	only	contains	7-bit	ASCII	characters.

	Use	helper	functions	to	ensure	that	the	inputs	you	operate	on	are	the	type	of
character	sequence	you	expect	(8-bit	values,	UTF-8	encoded	characters,	Unicode
characters,	etc.).

	If	you	want	to	read	or	write	binary	data	to/from	a	file,	always	open	the	file	using	a
binary	mode	(like	'rb'	or	'wb').



Item	4:	Write	Helper	Functions	Instead	of	Complex
Expressions
Python’s	pithy	syntax	makes	it	easy	to	write	single-line	expressions	that	implement	a	lot
of	logic.	For	example,	say	you	want	to	decode	the	query	string	from	a	URL.	Here,	each
query	string	parameter	represents	an	integer	value:
Click	here	to	view	code	image

from	urllib.parse	import	parse_qs

my_values	=	parse_qs(‘red=5&blue=0&green=’,

																					keep_blank_values=True)

print(repr(my_values))

>>>

{‘red’:	[‘5’],	‘green’:	[”],	‘blue’:	[‘0’]}

Some	query	string	parameters	may	have	multiple	values,	some	may	have	single	values,
some	may	be	present	but	have	blank	values,	and	some	may	be	missing	entirely.	Using	the
get	method	on	the	result	dictionary	will	return	different	values	in	each	circumstance.
Click	here	to	view	code	image

print(‘Red:					’,	my_values.get(‘red’))

print(‘Green:			’,	my_values.get(‘green’))

print(‘Opacity:	‘,	my_values.get(‘opacity’))

>>>

Red:						[‘5’]

Green:				[”]

Opacity:		None

It’d	be	nice	if	a	default	value	of	0	was	assigned	when	a	parameter	isn’t	supplied	or	is
blank.	You	might	choose	to	do	this	with	Boolean	expressions	because	it	feels	like	this
logic	doesn’t	merit	a	whole	if	statement	or	helper	function	quite	yet.

Python’s	syntax	makes	this	choice	all	too	easy.	The	trick	here	is	that	the	empty	string,	the
empty	list,	and	zero	all	evaluate	to	False	implicitly.	Thus,	the	expressions	below	will
evaluate	to	the	subexpression	after	the	or	operator	when	the	first	subexpression	is
False.
Click	here	to	view	code	image

#	For	query	string	‘red=5&blue=0&green=’

red	=	my_values.get(‘red’,	[”])[0]	or	0

green	=	my_values.get(‘green’,	[”])[0]	or	0

opacity	=	my_values.get(‘opacity’,	[”])[0]	or	0

print(‘Red:					%r’	%	red)

print(‘Green:			%r’	%	green)

print(‘Opacity:	%r’	%	opacity)

>>>

Red:					‘5’

Green:			0

Opacity:	0

The	red	case	works	because	the	key	is	present	in	the	my_values	dictionary.	The	value
is	a	list	with	one	member:	the	string	'5'.	This	string	implicitly	evaluates	to	True,	so



red	is	assigned	to	the	first	part	of	the	or	expression.

The	green	case	works	because	the	value	in	the	my_values	dictionary	is	a	list	with	one
member:	an	empty	string.	The	empty	string	implicitly	evaluates	to	False,	causing	the	or
expression	to	evaluate	to	0.

The	opacity	case	works	because	the	value	in	the	my_values	dictionary	is	missing
altogether.	The	behavior	of	the	get	method	is	to	return	its	second	argument	if	the	key
doesn’t	exist	in	the	dictionary.	The	default	value	in	this	case	is	a	list	with	one	member,	an
empty	string.	When	opacity	isn’t	found	in	the	dictionary,	this	code	does	exactly	the
same	thing	as	the	green	case.

However,	this	expression	is	difficult	to	read	and	it	still	doesn’t	do	everything	you	need.
You’d	also	want	to	ensure	that	all	the	parameter	values	are	integers	so	you	can	use	them	in
mathematical	expressions.	To	do	that,	you’d	wrap	each	expression	with	the	int	built-in
function	to	parse	the	string	as	an	integer.
Click	here	to	view	code	image

red	=	int(my_values.get(‘red’,	[”])[0]	or	0)

This	is	now	extremely	hard	to	read.	There’s	so	much	visual	noise.	The	code	isn’t
approachable.	A	new	reader	of	the	code	would	have	to	spend	too	much	time	picking	apart
the	expression	to	figure	out	what	it	actually	does.	Even	though	it’s	nice	to	keep	things
short,	it’s	not	worth	trying	to	fit	this	all	on	one	line.

Python	2.5	added	if/else	conditional—or	ternary—expressions	to	make	cases	like	this
clearer	while	keeping	the	code	short.
Click	here	to	view	code	image

red	=	my_values.get(‘red’,	[”])

red	=	int(red[0])	if	red[0]	else	0

This	is	better.	For	less	complicated	situations,	if/else	conditional	expressions	can	make
things	very	clear.	But	the	example	above	is	still	not	as	clear	as	the	alternative	of	a	full
if/else	statement	over	multiple	lines.	Seeing	all	of	the	logic	spread	out	like	this	makes
the	dense	version	seem	even	more	complex.
Click	here	to	view	code	image

green	=	my_values.get(‘green’,	[”])

if	green[0]:

				green	=	int(green[0])

else:

				green	=	0

Writing	a	helper	function	is	the	way	to	go,	especially	if	you	need	to	use	this	logic
repeatedly.
Click	here	to	view	code	image

def	get_first_int(values,	key,	default=0):

				found	=	values.get(key,	[”])

				if	found[0]:

								found	=	int(found[0])

				else:

								found	=	default

				return	found



The	calling	code	is	much	clearer	than	the	complex	expression	using	or	and	the	two-line
version	using	the	if/else	expression.
Click	here	to	view	code	image

green	=	get_first_int(my_values,	‘green’)

As	soon	as	your	expressions	get	complicated,	it’s	time	to	consider	splitting	them	into
smaller	pieces	and	moving	logic	into	helper	functions.	What	you	gain	in	readability
always	outweighs	what	brevity	may	have	afforded	you.	Don’t	let	Python’s	pithy	syntax	for
complex	expressions	get	you	into	a	mess	like	this.

Things	to	Remember
	Python’s	syntax	makes	it	all	too	easy	to	write	single-line	expressions	that	are	overly
complicated	and	difficult	to	read.

	Move	complex	expressions	into	helper	functions,	especially	if	you	need	to	use	the
same	logic	repeatedly.

	The	if/else	expression	provides	a	more	readable	alternative	to	using	Boolean
operators	like	or	and	and	in	expressions.

Item	5:	Know	How	to	Slice	Sequences
Python	includes	syntax	for	slicing	sequences	into	pieces.	Slicing	lets	you	access	a	subset
of	a	sequence’s	items	with	minimal	effort.	The	simplest	uses	for	slicing	are	the	built-in
types	list,	str,	and	bytes.	Slicing	can	be	extended	to	any	Python	class	that
implements	the	__getitem__	and	__setitem__	special	methods	(see	Item	28:
“Inherit	from	collections.abc	for	Custom	Container	Types”).

The	basic	form	of	the	slicing	syntax	is	somelist[start:end],	where	start	is
inclusive	and	end	is	exclusive.
Click	here	to	view	code	image

a	=	[‘a’,	‘b’,	‘c’,	‘d’,	‘e’,	‘f’,	‘g’,	‘h’]

print(‘First	four:’,	a[:4])

print(‘Last	four:	‘,	a[-4:])

print(‘Middle	two:’,	a[3:-3])

>>>

First	four:	[‘a’,	‘b’,	‘c’,	‘d’]

Last	four:		[‘e’,	‘f’,	‘g’,	‘h’]

Middle	two:	[‘d’,	‘e’]

When	slicing	from	the	start	of	a	list,	you	should	leave	out	the	zero	index	to	reduce	visual
noise.

assert	a[:5]	==	a[0:5]

When	slicing	to	the	end	of	a	list,	you	should	leave	out	the	final	index	because	it’s
redundant.

assert	a[5:]	==	a[5:len(a)]

Using	negative	numbers	for	slicing	is	helpful	for	doing	offsets	relative	to	the	end	of	a	list.



All	of	these	forms	of	slicing	would	be	clear	to	a	new	reader	of	your	code.	There	are	no
surprises,	and	I	encourage	you	to	use	these	variations.
Click	here	to	view	code	image

a[:]						#	[‘a’,	‘b’,	‘c’,	‘d’,	‘e’,	‘f’,	‘g’,	‘h’]

a[:5]					#	[‘a’,	‘b’,	‘c’,	‘d’,	‘e’]

a[:-1]				#	[‘a’,	‘b’,	‘c’,	‘d’,	‘e’,	‘f’,	‘g’]

a[4:]					#																					[‘e’,	‘f’,	‘g’,	‘h’]

a[-3:]				#																										[‘f’,	‘g’,	‘h’]

a[2:5]				#											[‘c’,	‘d’,	‘e’]

a[2:-1]			#											[‘c’,	‘d’,	‘e’,	‘f’,	‘g’]

a[-3:-1]		#																										[‘f’,	‘g’]

Slicing	deals	properly	with	start	and	end	indexes	that	are	beyond	the	boundaries	of	the
list.	That	makes	it	easy	for	your	code	to	establish	a	maximum	length	to	consider	for	an
input	sequence.

first_twenty_items	=	a[:20]

last_twenty_items	=	a[-20:]

In	contrast,	accessing	the	same	index	directly	causes	an	exception.
Click	here	to	view	code	image

a[20]

>>>

IndexError:	list	index	out	of	range

Note

Beware	that	indexing	a	list	by	a	negative	variable	is	one	of	the	few	situations	in
which	you	can	get	surprising	results	from	slicing.	For	example,	the	expression
somelist[-n:]	will	work	fine	when	n	is	greater	than	one	(e.g.,
somelist[-3:]).	However,	when	n	is	zero,	the	expression	somelist[-0:]
will	result	in	a	copy	of	the	original	list.

The	result	of	slicing	a	list	is	a	whole	new	list.	References	to	the	objects	from	the	original
list	are	maintained.	Modifying	the	result	of	slicing	won’t	affect	the	original	list.
Click	here	to	view	code	image

b	=	a[4:]

print(‘Before:			’,	b)

b[1]	=	99

print(‘After:				’,	b)

print(‘No	change:’,	a)

>>>

Before:				[‘e’,	‘f’,	‘g’,	‘h’]

After:					[‘e’,	99,	‘g’,	‘h’]

No	change:	[‘a’,	‘b’,	‘c’,	‘d’,	‘e’,	‘f’,	‘g’,	‘h’]

When	used	in	assignments,	slices	will	replace	the	specified	range	in	the	original	list.
Unlike	tuple	assignments	(like	a,	b	=	c[:2]),	the	length	of	slice	assignments	don’t
need	to	be	the	same.	The	values	before	and	after	the	assigned	slice	will	be	preserved.	The
list	will	grow	or	shrink	to	accommodate	the	new	values.



Click	here	to	view	code	image

print(‘Before	‘,	a)

a[2:7]	=	[99,	22,	14]

print(‘After		’,	a)

>>>

Before		[‘a’,	‘b’,	‘c’,	‘d’,	‘e’,	‘f’,	‘g’,	‘h’]

After			[‘a’,	‘b’,	99,	22,	14,	‘h’]

If	you	leave	out	both	the	start	and	the	end	indexes	when	slicing,	you’ll	end	up	with	a	copy
of	the	original	list.
Click	here	to	view	code	image

b	=	a[:]

assert	b	==	a	and	b	is	not	a

If	you	assign	a	slice	with	no	start	or	end	indexes,	you’ll	replace	its	entire	contents	with	a
copy	of	what’s	referenced	(instead	of	allocating	a	new	list).
Click	here	to	view	code	image

b	=	a

print(‘Before’,	a)

a[:]	=	[101,	102,	103]

assert	a	is	b											#	Still	the	same	list	object

print(‘After	‘,	a)						#	Now	has	different	contents

>>>

Before	[‘a’,	‘b’,	99,	22,	14,	‘h’]

After		[101,	102,	103]

Things	to	Remember
	Avoid	being	verbose:	Don’t	supply	0	for	the	start	index	or	the	length	of	the
sequence	for	the	end	index.

	Slicing	is	forgiving	of	start	or	end	indexes	that	are	out	of	bounds,	making	it	easy
to	express	slices	on	the	front	or	back	boundaries	of	a	sequence	(like	a[:20]	or
a[-20:]).

	Assigning	to	a	list	slice	will	replace	that	range	in	the	original	sequence	with
what’s	referenced	even	if	their	lengths	are	different.

Item	6:	Avoid	Using	start,	end,	and	stride	in	a	Single
Slice
In	addition	to	basic	slicing	(see	Item	5:	“Know	How	to	Slice	Sequences”),	Python	has
special	syntax	for	the	stride	of	a	slice	in	the	form	somelist[start:end:stride].
This	lets	you	take	every	nth	item	when	slicing	a	sequence.	For	example,	the	stride	makes
it	easy	to	group	by	even	and	odd	indexes	in	a	list.
Click	here	to	view	code	image

a	=	[‘red’,	‘orange’,	‘yellow’,	‘green’,	‘blue’,	‘purple’]

odds	=	a[::2]

evens	=	a[1::2]

print(odds)



print(evens)

>>>

[‘red’,	‘yellow’,	‘blue’]

[‘orange’,	‘green’,	‘purple’]

The	problem	is	that	the	stride	syntax	often	causes	unexpected	behavior	that	can
introduce	bugs.	For	example,	a	common	Python	trick	for	reversing	a	byte	string	is	to	slice
the	string	with	a	stride	of	-1.

x	=	b’mongoose’

y	=	x[::-1]

print(y)

>>>

b’esoognom’

That	works	well	for	byte	strings	and	ASCII	characters,	but	it	will	break	for	Unicode
characters	encoded	as	UTF-8	byte	strings.
Click	here	to	view	code	image

w	=	‘ ’

x	=	w.encode(‘utf-8’)

y	=	x[::-1]

z	=	y.decode(‘utf-8’)

>>>

UnicodeDecodeError:	‘utf-8’	codec	can’t	decode	byte	0x9d	in

position	0:	invalid	start	byte

Are	negative	strides	besides	-1	useful?	Consider	the	following	examples.
Click	here	to	view	code	image

a	=	[‘a’,	‘b’,	‘c’,	‘d’,	‘e’,	‘f’,	‘g’,	‘h’]

a[::2]			#	[‘a’,	‘c’,	‘e’,	‘g’]

a[::-2]		#	[‘h’,	‘f’,	‘d’,	‘b’]

Here,	::2	means	select	every	second	item	starting	at	the	beginning.	Trickier,	::-2
means	select	every	second	item	starting	at	the	end	and	moving	backwards.

What	do	you	think	2::2	means?	What	about	-2::-2	vs.	-2:2:-2	vs.	2:2:-2?
Click	here	to	view	code	image

a[2::2]					#	[‘c’,	‘e’,	‘g’]

a[-2::-2]			#	[‘g’,	‘e’,	‘c’,	‘a’]

a[-2:2:-2]		#	[‘g’,	‘e’]

a[2:2:-2]			#	[]

The	point	is	that	the	stride	part	of	the	slicing	syntax	can	be	extremely	confusing.
Having	three	numbers	within	the	brackets	is	hard	enough	to	read	because	of	its	density.
Then	it’s	not	obvious	when	the	start	and	end	indexes	come	into	effect	relative	to	the
stride	value,	especially	when	stride	is	negative.

To	prevent	problems,	avoid	using	stride	along	with	start	and	end	indexes.	If	you
must	use	a	stride,	prefer	making	it	a	positive	value	and	omit	start	and	end	indexes.
If	you	must	use	stride	with	start	or	end	indexes,	consider	using	one	assignment	to
stride	and	another	to	slice.



Click	here	to	view	code	image

b	=	a[::2]			#	[‘a’,	‘c’,	‘e’,	‘g’]

c	=	b[1:-1]		#	[‘c’,	‘e’]

Slicing	and	then	striding	will	create	an	extra	shallow	copy	of	the	data.	The	first	operation
should	try	to	reduce	the	size	of	the	resulting	slice	by	as	much	as	possible.	If	your	program
can’t	afford	the	time	or	memory	required	for	two	steps,	consider	using	the	itertools
built-in	module’s	islice	method	(see	Item	46:	“Use	Built-in	Algorithms	and	Data
Structures”),	which	doesn’t	permit	negative	values	for	start,	end,	or	stride.

Things	to	Remember
	Specifying	start,	end,	and	stride	in	a	slice	can	be	extremely	confusing.

	Prefer	using	positive	stride	values	in	slices	without	start	or	end	indexes.
Avoid	negative	stride	values	if	possible.

	Avoid	using	start,	end,	and	stride	together	in	a	single	slice.	If	you	need	all
three	parameters,	consider	doing	two	assignments	(one	to	slice,	another	to	stride)	or
using	islice	from	the	itertools	built-in	module.

Item	7:	Use	List	Comprehensions	Instead	of	map	and
filter

Python	provides	compact	syntax	for	deriving	one	list	from	another.	These	expressions	are
called	list	comprehensions.	For	example,	say	you	want	to	compute	the	square	of	each
number	in	a	list.	You	can	do	this	by	providing	the	expression	for	your	computation	and	the
input	sequence	to	loop	over.
Click	here	to	view	code	image

a	=	[1,	2,	3,	4,	5,	6,	7,	8,	9,	10]

squares	=	[x**2	for	x	in	a]

print(squares)

>>>

[1,	4,	9,	16,	25,	36,	49,	64,	81,	100]

Unless	you’re	applying	a	single-argument	function,	list	comprehensions	are	clearer	than
the	map	built-in	function	for	simple	cases.	map	requires	creating	a	lambda	function	for
the	computation,	which	is	visually	noisy.
Click	here	to	view	code	image

squares	=	map(lambda	x:	x	**	2,	a)

Unlike	map,	list	comprehensions	let	you	easily	filter	items	from	the	input	list,	removing
corresponding	outputs	from	the	result.	For	example,	say	you	only	want	to	compute	the
squares	of	the	numbers	that	are	divisible	by	2.	Here,	I	do	this	by	adding	a	conditional
expression	to	the	list	comprehension	after	the	loop:
Click	here	to	view	code	image

even_squares	=	[x**2	for	x	in	a	if	x	%	2	==	0]

print(even_squares)



>>>

[4,	16,	36,	64,	100]

The	filter	built-in	function	can	be	used	along	with	map	to	achieve	the	same	outcome,
but	it	is	much	harder	to	read.
Click	here	to	view	code	image

alt	=	map(lambda	x:	x**2,	filter(lambda	x:	x	%	2	==	0,	a))

assert	even_squares	==	list(alt)

Dictionaries	and	sets	have	their	own	equivalents	of	list	comprehensions.	These	make	it
easy	to	create	derivative	data	structures	when	writing	algorithms.
Click	here	to	view	code	image

chile_ranks	=	{‘ghost’:	1,	‘habanero’:	2,	‘cayenne’:	3}

rank_dict	=	{rank:	name	for	name,	rank	in	chile_ranks.items()}

chile_len_set	=	{len(name)	for	name	in	rank_dict.values()}

print(rank_dict)

print(chile_len_set)

>>>

{1:	‘ghost’,	2:	‘habanero’,	3:	‘cayenne’}

{8,	5,	7}

Things	to	Remember
	List	comprehensions	are	clearer	than	the	map	and	filter	built-in	functions
because	they	don’t	require	extra	lambda	expressions.

	List	comprehensions	allow	you	to	easily	skip	items	from	the	input	list,	a	behavior
map	doesn’t	support	without	help	from	filter.

	Dictionaries	and	sets	also	support	comprehension	expressions.

Item	8:	Avoid	More	Than	Two	Expressions	in	List
Comprehensions
Beyond	basic	usage	(see	Item	7:	“Use	List	Comprehensions	Instead	of	map	and
filter”),	list	comprehensions	also	support	multiple	levels	of	looping.	For	example,	say
you	want	to	simplify	a	matrix	(a	list	containing	other	lists)	into	one	flat	list	of	all	cells.
Here,	I	do	this	with	a	list	comprehension	by	including	two	for	expressions.	These
expressions	run	in	the	order	provided	from	left	to	right.
Click	here	to	view	code	image

matrix	=	[[1,	2,	3],	[4,	5,	6],	[7,	8,	9]]

flat	=	[x	for	row	in	matrix	for	x	in	row]

print(flat)

>>>

[1,	2,	3,	4,	5,	6,	7,	8,	9]

The	example	above	is	simple,	readable,	and	a	reasonable	usage	of	multiple	loops.	Another
reasonable	usage	of	multiple	loops	is	replicating	the	two-level	deep	layout	of	the	input	list.



For	example,	say	you	want	to	square	the	value	in	each	cell	of	a	two-dimensional	matrix.
This	expression	is	noisier	because	of	the	extra	[]	characters,	but	it’s	still	easy	to	read.
Click	here	to	view	code	image

squared	=	[[x**2	for	x	in	row]	for	row	in	matrix]

print(squared)

>>>

[[1,	4,	9],	[16,	25,	36],	[49,	64,	81]]

If	this	expression	included	another	loop,	the	list	comprehension	would	get	so	long	that
you’d	have	to	split	it	over	multiple	lines.
Click	here	to	view	code	image

my_lists	=	[

				[[1,	2,	3],	[4,	5,	6]],

				#	…

]

flat	=	[x	for	sublist1	in	my_lists

								for	sublist2	in	sublist1

								for	x	in	sublist2]

At	this	point,	the	multiline	comprehension	isn’t	much	shorter	than	the	alternative.	Here,	I
produce	the	same	result	using	normal	loop	statements.	The	indentation	of	this	version
makes	the	looping	clearer	than	the	list	comprehension.

flat	=	[]

for	sublist1	in	my_lists:

				for	sublist2	in	sublist1:

								flat.extend(sublist2)

List	comprehensions	also	support	multiple	if	conditions.	Multiple	conditions	at	the	same
loop	level	are	an	implicit	and	expression.	For	example,	say	you	want	to	filter	a	list	of
numbers	to	only	even	values	greater	than	four.	These	two	list	comprehensions	are
equivalent.
Click	here	to	view	code	image

a	=	[1,	2,	3,	4,	5,	6,	7,	8,	9,	10]

b	=	[x	for	x	in	a	if	x	>	4	if	x	%	2	==	0]

c	=	[x	for	x	in	a	if	x	>	4	and	x	%	2	==	0]

Conditions	can	be	specified	at	each	level	of	looping	after	the	for	expression.	For
example,	say	you	want	to	filter	a	matrix	so	the	only	cells	remaining	are	those	divisible	by
3	in	rows	that	sum	to	10	or	higher.	Expressing	this	with	list	comprehensions	is	short,	but
extremely	difficult	to	read.
Click	here	to	view	code	image

matrix	=	[[1,	2,	3],	[4,	5,	6],	[7,	8,	9]]

filtered	=	[[x	for	x	in	row	if	x	%	3	==	0]

												for	row	in	matrix	if	sum(row)	>=	10]

print(filtered)

>>>

[[6],	[9]]

Though	this	example	is	a	bit	convoluted,	in	practice	you’ll	see	situations	arise	where	such
expressions	seem	like	a	good	fit.	I	strongly	encourage	you	to	avoid	using	list



comprehensions	that	look	like	this.	The	resulting	code	is	very	difficult	for	others	to
comprehend.	What	you	save	in	the	number	of	lines	doesn’t	outweigh	the	difficulties	it
could	cause	later.

The	rule	of	thumb	is	to	avoid	using	more	than	two	expressions	in	a	list	comprehension.
This	could	be	two	conditions,	two	loops,	or	one	condition	and	one	loop.	As	soon	as	it	gets
more	complicated	than	that,	you	should	use	normal	if	and	for	statements	and	write	a
helper	function	(see	Item	16:	“Consider	Generators	Instead	of	Returning	Lists”).

Things	to	Remember
	List	comprehensions	support	multiple	levels	of	loops	and	multiple	conditions	per
loop	level.

	List	comprehensions	with	more	than	two	expressions	are	very	difficult	to	read	and
should	be	avoided.

Item	9:	Consider	Generator	Expressions	for	Large
Comprehensions
The	problem	with	list	comprehensions	(see	Item	7:	“Use	List	Comprehensions	Instead	of
map	and	filter”)	is	that	they	may	create	a	whole	new	list	containing	one	item	for	each
value	in	the	input	sequence.	This	is	fine	for	small	inputs,	but	for	large	inputs	this	could
consume	significant	amounts	of	memory	and	cause	your	program	to	crash.

For	example,	say	you	want	to	read	a	file	and	return	the	number	of	characters	on	each	line.
Doing	this	with	a	list	comprehension	would	require	holding	the	length	of	every	line	of	the
file	in	memory.	If	the	file	is	absolutely	enormous	or	perhaps	a	never-ending	network
socket,	list	comprehensions	are	problematic.	Here,	I	use	a	list	comprehension	in	a	way	that
can	only	handle	small	input	values.
Click	here	to	view	code	image

value	=	[len(x)	for	x	in	open(‘/tmp/my_file.txt’)]

print(value)

>>>

[100,	57,	15,	1,	12,	75,	5,	86,	89,	11]

To	solve	this,	Python	provides	generator	expressions,	a	generalization	of	list
comprehensions	and	generators.	Generator	expressions	don’t	materialize	the	whole	output
sequence	when	they’re	run.	Instead,	generator	expressions	evaluate	to	an	iterator	that
yields	one	item	at	a	time	from	the	expression.

A	generator	expression	is	created	by	putting	list-comprehension-like	syntax	between	()
characters.	Here,	I	use	a	generator	expression	that	is	equivalent	to	the	code	above.
However,	the	generator	expression	immediately	evaluates	to	an	iterator	and	doesn’t	make
any	forward	progress.
Click	here	to	view	code	image

it	=	(len(x)	for	x	in	open(‘/tmp/my_file.txt’))

print(it)



>>>

<generator	object	<genexpr>	at	0x101b81480>

The	returned	iterator	can	be	advanced	one	step	at	a	time	to	produce	the	next	output	from
the	generator	expression	as	needed	(using	the	next	built-in	function).	Your	code	can
consume	as	much	of	the	generator	expression	as	you	want	without	risking	a	blowup	in
memory	usage.

print(next(it))

print(next(it))

>>>

100

57

Another	powerful	outcome	of	generator	expressions	is	that	they	can	be	composed	together.
Here,	I	take	the	iterator	returned	by	the	generator	expression	above	and	use	it	as	the	input
for	another	generator	expression.
Click	here	to	view	code	image

roots	=	((x,	x**0.5)	for	x	in	it)

Each	time	I	advance	this	iterator,	it	will	also	advance	the	interior	iterator,	creating	a
domino	effect	of	looping,	evaluating	conditional	expressions,	and	passing	around	inputs
and	outputs.

print(next(roots))

>>>

(15,	3.872983346207417)

Chaining	generators	like	this	executes	very	quickly	in	Python.	When	you’re	looking	for	a
way	to	compose	functionality	that’s	operating	on	a	large	stream	of	input,	generator
expressions	are	the	best	tool	for	the	job.	The	only	gotcha	is	that	the	iterators	returned	by
generator	expressions	are	stateful,	so	you	must	be	careful	not	to	use	them	more	than	once
(see	Item	17:	“Be	Defensive	When	Iterating	Over	Arguments”).

Things	to	Remember
	List	comprehensions	can	cause	problems	for	large	inputs	by	using	too	much
memory.

	Generator	expressions	avoid	memory	issues	by	producing	outputs	one	at	a	time	as
an	iterator.

	Generator	expressions	can	be	composed	by	passing	the	iterator	from	one	generator
expression	into	the	for	subexpression	of	another.

	Generator	expressions	execute	very	quickly	when	chained	together.

Item	10:	Prefer	enumerate	Over	range
The	range	built-in	function	is	useful	for	loops	that	iterate	over	a	set	of	integers.

random_bits	=	0

for	i	in	range(64):



				if	randint(0,	1):

								random_bits	|=	1	<<	i

When	you	have	a	data	structure	to	iterate	over,	like	a	list	of	strings,	you	can	loop	directly
over	the	sequence.
Click	here	to	view	code	image

flavor_list	=	[‘vanilla’,	‘chocolate’,	‘pecan’,	‘strawberry’]

for	flavor	in	flavor_list:

				print(‘%s	is	delicious’	%	flavor)

Often,	you’ll	want	to	iterate	over	a	list	and	also	know	the	index	of	the	current	item	in	the
list.	For	example,	say	you	want	to	print	the	ranking	of	your	favorite	ice	cream	flavors.	One
way	to	do	it	is	using	range.
Click	here	to	view	code	image

for	i	in	range(len(flavor_list)):

				flavor	=	flavor_list[i]

				print(‘%d:	%s’	%	(i	+	1,	flavor))

This	looks	clumsy	compared	with	the	other	examples	of	iterating	over	flavor_list	or
range.	You	have	to	get	the	length	of	the	list.	You	have	to	index	into	the	array.	It’s	harder
to	read.

Python	provides	the	enumerate	built-in	function	for	addressing	this	situation.
enumerate	wraps	any	iterator	with	a	lazy	generator.	This	generator	yields	pairs	of	the
loop	index	and	the	next	value	from	the	iterator.	The	resulting	code	is	much	clearer.
Click	here	to	view	code	image

for	i,	flavor	in	enumerate(flavor_list):

				print(‘%d:	%s’	%	(i	+	1,	flavor))

>>>

1:	vanilla

2:	chocolate

3:	pecan

4:	strawberry

You	can	make	this	even	shorter	by	specifying	the	number	from	which	enumerate
should	begin	counting	(1	in	this	case).
Click	here	to	view	code	image

for	i,	flavor	in	enumerate(flavor_list,	1):

				print(‘%d:	%s’	%	(i,	flavor))

Things	to	Remember
	enumerate	provides	concise	syntax	for	looping	over	an	iterator	and	getting	the
index	of	each	item	from	the	iterator	as	you	go.

	Prefer	enumerate	instead	of	looping	over	a	range	and	indexing	into	a	sequence.

	You	can	supply	a	second	parameter	to	enumerate	to	specify	the	number	from
which	to	begin	counting	(zero	is	the	default).



Item	11:	Use	zip	to	Process	Iterators	in	Parallel
Often	in	Python	you	find	yourself	with	many	lists	of	related	objects.	List	comprehensions
make	it	easy	to	take	a	source	list	and	get	a	derived	list	by	applying	an	expression	(see	Item
7:	“Use	List	Comprehensions	Instead	of	map	and	filter”).
Click	here	to	view	code	image

names	=	[‘Cecilia’,	‘Lise’,	‘Marie’]

letters	=	[len(n)	for	n	in	names]

The	items	in	the	derived	list	are	related	to	the	items	in	the	source	list	by	their	indexes.	To
iterate	over	both	lists	in	parallel,	you	can	iterate	over	the	length	of	the	names	source	list.
Click	here	to	view	code	image

longest_name	=	None

max_letters	=	0

for	i	in	range(len(names)):

				count	=	letters[i]

				if	count	>	max_letters:

								longest_name	=	names[i]

								max_letters	=	count

print(longest_name)

>>>

Cecilia

The	problem	is	that	this	whole	loop	statement	is	visually	noisy.	The	indexes	into	names
and	letters	make	the	code	hard	to	read.	Indexing	into	the	arrays	by	the	loop	index	i
happens	twice.	Using	enumerate	(see	Item	10:	“Prefer	enumerate	Over	range”)
improves	this	slightly,	but	it’s	still	not	ideal.
Click	here	to	view	code	image

for	i,	name	in	enumerate(names):

				count	=	letters[i]

				if	count	>	max_letters:

								longest_name	=	name

								max_letters	=	count

To	make	this	code	clearer,	Python	provides	the	zip	built-in	function.	In	Python	3,	zip
wraps	two	or	more	iterators	with	a	lazy	generator.	The	zip	generator	yields	tuples
containing	the	next	value	from	each	iterator.	The	resulting	code	is	much	cleaner	than
indexing	into	multiple	lists.
Click	here	to	view	code	image

for	name,	count	in	zip(names,	letters):

				if	count	>	max_letters:

								longest_name	=	name

								max_letters	=	count

There	are	two	problems	with	the	zip	built-in.

The	first	issue	is	that	in	Python	2	zip	is	not	a	generator;	it	will	fully	exhaust	the	supplied
iterators	and	return	a	list	of	all	the	tuples	it	creates.	This	could	potentially	use	a	lot	of
memory	and	cause	your	program	to	crash.	If	you	want	to	zip	very	large	iterators	in



Python	2,	you	should	use	izip	from	the	itertools	built-in	module	(see	Item	46:	“Use
Built-in	Algorithms	and	Data	Structures”).

The	second	issue	is	that	zip	behaves	strangely	if	the	input	iterators	are	of	different
lengths.	For	example,	say	you	add	another	name	to	the	list	above	but	forget	to	update	the
letter	counts.	Running	zip	on	the	two	input	lists	will	have	an	unexpected	result.
Click	here	to	view	code	image

names.append(‘Rosalind’)

for	name,	count	in	zip(names,	letters):

				print(name)

>>>

Cecilia

Lise

Marie

The	new	item	for	'Rosalind'	isn’t	there.	This	is	just	how	zip	works.	It	keeps	yielding
tuples	until	a	wrapped	iterator	is	exhausted.	This	approach	works	fine	when	you	know	that
the	iterators	are	of	the	same	length,	which	is	often	the	case	for	derived	lists	created	by	list
comprehensions.	In	many	other	cases,	the	truncating	behavior	of	zip	is	surprising	and
bad.	If	you	aren’t	confident	that	the	lengths	of	the	lists	you	want	to	zip	are	equal,
consider	using	the	zip_longest	function	from	the	itertools	built-in	module
instead	(also	called	izip_longest	in	Python	2).

Things	to	Remember
	The	zip	built-in	function	can	be	used	to	iterate	over	multiple	iterators	in	parallel.

	In	Python	3,	zip	is	a	lazy	generator	that	produces	tuples.	In	Python	2,	zip	returns
the	full	result	as	a	list	of	tuples.

	zip	truncates	its	output	silently	if	you	supply	it	with	iterators	of	different	lengths.

	The	zip_longest	function	from	the	itertools	built-in	module	lets	you	iterate
over	multiple	iterators	in	parallel	regardless	of	their	lengths	(see	Item	46:	“Use
Built-in	Algorithms	and	Data	Structures”).

Item	12:	Avoid	else	Blocks	After	for	and	while	Loops
Python	loops	have	an	extra	feature	that	is	not	available	in	most	other	programming
languages:	you	can	put	an	else	block	immediately	after	a	loop’s	repeated	interior	block.

for	i	in	range(3):

				print(‘Loop	%d’	%	i)

else:

				print(‘Else	block!’)

>>>

Loop	0

Loop	1

Loop	2

Else	block!



Surprisingly,	the	else	block	runs	immediately	after	the	loop	finishes.	Why	is	the	clause
called	“else”?	Why	not	“and”?	In	an	if/else	statement,	else	means,	“Do	this	if	the
block	before	this	doesn’t	happen.”	In	a	try/except	statement,	except	has	the	same
definition:	“Do	this	if	trying	the	block	before	this	failed.”

Similarly,	else	from	try/except/else	follows	this	pattern	(see	Item	13:	“Take
Advantage	of	Each	Block	in	try/except/else/finally”)	because	it	means,	“Do	this
if	the	block	before	did	not	fail.”	try/finally	is	also	intuitive	because	it	means,
“Always	do	what	is	final	after	trying	the	block	before.”

Given	all	of	the	uses	of	else,	except,	and	finally	in	Python,	a	new	programmer
might	assume	that	the	else	part	of	for/else	means,	“Do	this	if	the	loop	wasn’t
completed.”	In	reality,	it	does	exactly	the	opposite.	Using	a	break	statement	in	a	loop
will	actually	skip	the	else	block.

for	i	in	range(3):

				print(‘Loop	%d’	%	i)

				if	i	==	1:

								break

else:

				print(‘Else	block!’)

>>>

Loop	0

Loop	1

Another	surprise	is	that	the	else	block	will	run	immediately	if	you	loop	over	an	empty
sequence.
Click	here	to	view	code	image

for	x	in	[]:

				print(‘Never	runs’)

else:

				print(‘For	Else	block!’)

>>>

For	Else	block!

The	else	block	also	runs	when	while	loops	are	initially	false.
Click	here	to	view	code	image

while	False:

				print(‘Never	runs’)

else:

				print(‘While	Else	block!’)

>>>

While	Else	block!

The	rationale	for	these	behaviors	is	that	else	blocks	after	loops	are	useful	when	you’re
using	loops	to	search	for	something.	For	example,	say	you	want	to	determine	whether	two
numbers	are	coprime	(their	only	common	divisor	is	1).	Here,	I	iterate	through	every
possible	common	divisor	and	test	the	numbers.	After	every	option	has	been	tried,	the	loop
ends.	The	else	block	runs	when	the	numbers	are	coprime	because	the	loop	doesn’t
encounter	a	break.



Click	here	to	view	code	image

a	=	4

b	=	9

for	i	in	range(2,	min(a,	b)	+	1):

				print(‘Testing’,	i)

				if	a	%	i	==	0	and	b	%	i	==	0:

								print(‘Not	coprime’)

								break

else:

				print(‘Coprime’)

>>>

Testing	2

Testing	3

Testing	4

Coprime

In	practice,	you	wouldn’t	write	the	code	this	way.	Instead,	you’d	write	a	helper	function	to
do	the	calculation.	Such	a	helper	function	is	written	in	two	common	styles.

The	first	approach	is	to	return	early	when	you	find	the	condition	you’re	looking	for.	You
return	the	default	outcome	if	you	fall	through	the	loop.
Click	here	to	view	code	image

def	coprime(a,	b):

				for	i	in	range(2,	min(a,	b)	+	1):

								if	a	%	i	==	0	and	b	%	i	==	0:

												return	False

				return	True

The	second	way	is	to	have	a	result	variable	that	indicates	whether	you’ve	found	what
you’re	looking	for	in	the	loop.	You	break	out	of	the	loop	as	soon	as	you	find	something.
Click	here	to	view	code	image

def	coprime2(a,	b):

				is_coprime	=	True

				for	i	in	range(2,	min(a,	b)	+	1):

								if	a	%	i	==	0	and	b	%	i	==	0:

												is_coprime	=	False

												break

				return	is_coprime

Both	of	these	approaches	are	so	much	clearer	to	readers	of	unfamiliar	code.	The
expressivity	you	gain	from	the	else	block	doesn’t	outweigh	the	burden	you	put	on
people	(including	yourself)	who	want	to	understand	your	code	in	the	future.	Simple
constructs	like	loops	should	be	self-evident	in	Python.	You	should	avoid	using	else
blocks	after	loops	entirely.

Things	to	Remember
	Python	has	special	syntax	that	allows	else	blocks	to	immediately	follow	for	and
while	loop	interior	blocks.

	The	else	block	after	a	loop	only	runs	if	the	loop	body	did	not	encounter	a	break
statement.



	Avoid	using	else	blocks	after	loops	because	their	behavior	isn’t	intuitive	and	can
be	confusing.

Item	13:	Take	Advantage	of	Each	Block	in
try/except/else/finally
There	are	four	distinct	times	that	you	may	want	to	take	action	during	exception	handling
in	Python.	These	are	captured	in	the	functionality	of	try,	except,	else,	and	finally
blocks.	Each	block	serves	a	unique	purpose	in	the	compound	statement,	and	their	various
combinations	are	useful	(see	Item	51:	“Define	a	Root	Exception	to	Insulate	Callers
from	APIs”	for	another	example).

Finally	Blocks
Use	try/finally	when	you	want	exceptions	to	propagate	up,	but	you	also	want	to	run
cleanup	code	even	when	exceptions	occur.	One	common	usage	of	try/finally	is	for
reliably	closing	file	handles	(see	Item	43:	“Consider	contextlib	and	with	Statements
for	Reusable	try/finally	Behavior”	for	another	approach).
Click	here	to	view	code	image

handle	=	open(‘/tmp/random_data.txt’)		#	May	raise	IOError

try:

				data	=	handle.read()		#	May	raise	UnicodeDecodeError

finally:

				handle.close()								#	Always	runs	after	try:

Any	exception	raised	by	the	read	method	will	always	propagate	up	to	the	calling	code,
yet	the	close	method	of	handle	is	also	guaranteed	to	run	in	the	finally	block.	You
must	call	open	before	the	try	block	because	exceptions	that	occur	when	opening	the	file
(like	IOError	if	the	file	does	not	exist)	should	skip	the	finally	block.

Else	Blocks
Use	try/except/else	to	make	it	clear	which	exceptions	will	be	handled	by	your	code
and	which	exceptions	will	propagate	up.	When	the	try	block	doesn’t	raise	an	exception,
the	else	block	will	run.	The	else	block	helps	you	minimize	the	amount	of	code	in	the
try	block	and	improves	readability.	For	example,	say	you	want	to	load	JSON	dictionary
data	from	a	string	and	return	the	value	of	a	key	it	contains.
Click	here	to	view	code	image

def	load_json_key(data,	key):

				try:

								result_dict	=	json.loads(data)		#	May	raise	ValueError

				except	ValueError	as	e:

								raise	KeyError	from	e

				else:

								return	result_dict[key]									#	May	raise	KeyError

If	the	data	isn’t	valid	JSON,	then	decoding	with	json.loads	will	raise	a
ValueError.	The	exception	is	caught	by	the	except	block	and	handled.	If	decoding	is



successful,	then	the	key	lookup	will	occur	in	the	else	block.	If	the	key	lookup	raises	any
exceptions,	they	will	propagate	up	to	the	caller	because	they	are	outside	the	try	block.
The	else	clause	ensures	that	what	follows	the	try/except	is	visually	distinguished
from	the	except	block.	This	makes	the	exception	propagation	behavior	clear.

Everything	Together
Use	try/except/else/finally	when	you	want	to	do	it	all	in	one	compound
statement.	For	example,	say	you	want	to	read	a	description	of	work	to	do	from	a	file,
process	it,	and	then	update	the	file	in	place.	Here,	the	try	block	is	used	to	read	the	file
and	process	it.	The	except	block	is	used	to	handle	exceptions	from	the	try	block	that
are	expected.	The	else	block	is	used	to	update	the	file	in	place	and	to	allow	related
exceptions	to	propagate	up.	The	finally	block	cleans	up	the	file	handle.
Click	here	to	view	code	image

UNDEFINED	=	object()

def	divide_json(path):

				handle	=	open(path,	‘r+’)			#	May	raise	IOError

				try:

								data	=	handle.read()				#	May	raise	UnicodeDecodeError

								op	=	json.loads(data)			#	May	raise	ValueError

								value	=	(

												op[‘numerator’]	/

												op[‘denominator’])		#	May	raise	ZeroDivisionError

				except	ZeroDivisionError	as	e:

								return	UNDEFINED

				else:

								op[‘result’]	=	value

								result	=	json.dumps(op)

								handle.seek(0)

								handle.write(result)				#	May	raise	IOError

								return	value

				finally:

								handle.close()										#	Always	runs

This	layout	is	especially	useful	because	all	of	the	blocks	work	together	in	intuitive	ways.
For	example,	if	an	exception	gets	raised	in	the	else	block	while	rewriting	the	result	data,
the	finally	block	will	still	run	and	close	the	file	handle.

Things	to	Remember
	The	try/finally	compound	statement	lets	you	run	cleanup	code	regardless	of
whether	exceptions	were	raised	in	the	try	block.

	The	else	block	helps	you	minimize	the	amount	of	code	in	try	blocks	and	visually
distinguish	the	success	case	from	the	try/except	blocks.

	An	else	block	can	be	used	to	perform	additional	actions	after	a	successful	try
block	but	before	common	cleanup	in	a	finally	block.



2.	Functions

The	first	organizational	tool	programmers	use	in	Python	is	the	function.	As	in	other
programming	languages,	functions	enable	you	to	break	large	programs	into	smaller,
simpler	pieces.	They	improve	readability	and	make	code	more	approachable.	They	allow
for	reuse	and	refactoring.

Functions	in	Python	have	a	variety	of	extra	features	that	make	the	programmer’s	life
easier.	Some	are	similar	to	capabilities	in	other	programming	languages,	but	many	are
unique	to	Python.	These	extras	can	make	a	function’s	purpose	more	obvious.	They	can
eliminate	noise	and	clarify	the	intention	of	callers.	They	can	significantly	reduce	subtle
bugs	that	are	difficult	to	find.

Item	14:	Prefer	Exceptions	to	Returning	None
When	writing	utility	functions,	there’s	a	draw	for	Python	programmers	to	give	special
meaning	to	the	return	value	of	None.	It	seems	to	makes	sense	in	some	cases.	For	example,
say	you	want	a	helper	function	that	divides	one	number	by	another.	In	the	case	of	dividing
by	zero,	returning	None	seems	natural	because	the	result	is	undefined.

def	divide(a,	b):

				try:

								return	a	/	b

				except	ZeroDivisionError:

								return	None

Code	using	this	function	can	interpret	the	return	value	accordingly.
result	=	divide(x,	y)

if	result	is	None:

				print(‘Invalid	inputs’)

What	happens	when	the	numerator	is	zero?	That	will	cause	the	return	value	to	also	be	zero
(if	the	denominator	is	non-zero).	This	can	cause	problems	when	you	evaluate	the	result	in
a	condition	like	an	if	statement.	You	may	accidentally	look	for	any	False	equivalent
value	to	indicate	errors	instead	of	only	looking	for	None	(see	Item	4:	“Write	Helper
Functions	Instead	of	Complex	Expressions”	for	a	similar	situation).
Click	here	to	view	code	image

x,	y	=	0,	5

result	=	divide(x,	y)

if	not	result:

				print(‘Invalid	inputs’)		#	This	is	wrong!

This	is	a	common	mistake	in	Python	code	when	None	has	special	meaning.	This	is	why
returning	None	from	a	function	is	error	prone.	There	are	two	ways	to	reduce	the	chance	of
such	errors.

The	first	way	is	to	split	the	return	value	into	a	two-tuple.	The	first	part	of	the	tuple
indicates	that	the	operation	was	a	success	or	failure.	The	second	part	is	the	actual	result
that	was	computed.

def	divide(a,	b):



				try:

								return	True,	a	/	b

				except	ZeroDivisionError:

								return	False,	None

Callers	of	this	function	have	to	unpack	the	tuple.	That	forces	them	to	consider	the	status
part	of	the	tuple	instead	of	just	looking	at	the	result	of	division.
Click	here	to	view	code	image

success,	result	=	divide(x,	y)

if	not	success:

				print(‘Invalid	inputs’)

The	problem	is	that	callers	can	easily	ignore	the	first	part	of	the	tuple	(using	the
underscore	variable	name,	a	Python	convention	for	unused	variables).	The	resulting	code
doesn’t	look	wrong	at	first	glance.	This	is	as	bad	as	just	returning	None.

_,	result	=	divide(x,	y)

if	not	result:

				print(‘Invalid	inputs’)

The	second,	better	way	to	reduce	these	errors	is	to	never	return	None	at	all.	Instead,	raise
an	exception	up	to	the	caller	and	make	them	deal	with	it.	Here,	I	turn	a
ZeroDivisionError	into	a	ValueError	to	indicate	to	the	caller	that	the	input
values	are	bad:
Click	here	to	view	code	image

def	divide(a,	b):

				try:

								return	a	/	b

				except	ZeroDivisionError	as	e:

								raise	ValueError(‘Invalid	inputs’)	from	e

Now	the	caller	should	handle	the	exception	for	the	invalid	input	case	(this	behavior	should
be	documented;	see	Item	49:	“Write	Docstrings	for	Every	Function,	Class,	and	Module”).
The	caller	no	longer	requires	a	condition	on	the	return	value	of	the	function.	If	the
function	didn’t	raise	an	exception,	then	the	return	value	must	be	good.	The	outcome	of
exception	handling	is	clear.
Click	here	to	view	code	image

x,	y	=	5,	2

try:

				result	=	divide(x,	y)

except	ValueError:

				print(‘Invalid	inputs’)

else:

				print(‘Result	is	%.1f’	%	result)

>>>

Result	is	2.5

Things	to	Remember
	Functions	that	return	None	to	indicate	special	meaning	are	error	prone	because
None	and	other	values	(e.g.,	zero,	the	empty	string)	all	evaluate	to	False	in
conditional	expressions.



	Raise	exceptions	to	indicate	special	situations	instead	of	returning	None.	Expect	the
calling	code	to	handle	exceptions	properly	when	they’re	documented.

Item	15:	Know	How	Closures	Interact	with	Variable	Scope
Say	you	want	to	sort	a	list	of	numbers	but	prioritize	one	group	of	numbers	to	come	first.
This	pattern	is	useful	when	you’re	rendering	a	user	interface	and	want	important	messages
or	exceptional	events	to	be	displayed	before	everything	else.

A	common	way	to	do	this	is	to	pass	a	helper	function	as	the	key	argument	to	a	list’s
sort	method.	The	helper’s	return	value	will	be	used	as	the	value	for	sorting	each	item	in
the	list.	The	helper	can	check	whether	the	given	item	is	in	the	important	group	and	can
vary	the	sort	key	accordingly.
Click	here	to	view	code	image

def	sort_priority(values,	group):

				def	helper(x):

								if	x	in	group:

												return	(0,	x)

								return	(1,	x)

				values.sort(key=helper)

This	function	works	for	simple	inputs.
Click	here	to	view	code	image

numbers	=	[8,	3,	1,	2,	5,	4,	7,	6]

group	=	{2,	3,	5,	7}

sort_priority(numbers,	group)

print(numbers)

>>>

[2,	3,	5,	7,	1,	4,	6,	8]

There	are	three	reasons	why	this	function	operates	as	expected:

	Python	supports	closures:	functions	that	refer	to	variables	from	the	scope	in	which
they	were	defined.	This	is	why	the	helper	function	is	able	to	access	the	group
argument	to	sort_priority.

	Functions	are	first-class	objects	in	Python,	meaning	you	can	refer	to	them	directly,
assign	them	to	variables,	pass	them	as	arguments	to	other	functions,	compare	them
in	expressions	and	if	statements,	etc.	This	is	how	the	sort	method	can	accept	a
closure	function	as	the	key	argument.

	Python	has	specific	rules	for	comparing	tuples.	It	first	compares	items	in	index	zero,
then	index	one,	then	index	two,	and	so	on.	This	is	why	the	return	value	from	the
helper	closure	causes	the	sort	order	to	have	two	distinct	groups.

It’d	be	nice	if	this	function	returned	whether	higher-priority	items	were	seen	at	all	so	the
user	interface	code	can	act	accordingly.	Adding	such	behavior	seems	straightforward.
There’s	already	a	closure	function	for	deciding	which	group	each	number	is	in.	Why	not
also	use	the	closure	to	flip	a	flag	when	high-priority	items	are	seen?	Then	the	function	can
return	the	flag	value	after	it’s	been	modified	by	the	closure.



Here,	I	try	to	do	that	in	a	seemingly	obvious	way:
Click	here	to	view	code	image

def	sort_priority2(numbers,	group):

				found	=	False

				def	helper(x):

								if	x	in	group:

												found	=	True		#	Seems	simple

												return	(0,	x)

								return	(1,	x)

				numbers.sort(key=helper)

				return	found

I	can	run	the	function	on	the	same	inputs	as	before.
Click	here	to	view	code	image

found	=	sort_priority2(numbers,	group)

print(‘Found:’,	found)

print(numbers)

>>>

Found:	False

[2,	3,	5,	7,	1,	4,	6,	8]

The	sorted	results	are	correct,	but	the	found	result	is	wrong.	Items	from	group	were
definitely	found	in	numbers,	but	the	function	returned	False.	How	could	this	happen?

When	you	reference	a	variable	in	an	expression,	the	Python	interpreter	will	traverse	the
scope	to	resolve	the	reference	in	this	order:

1.	The	current	function’s	scope

2.	Any	enclosing	scopes	(like	other	containing	functions)

3.	The	scope	of	the	module	that	contains	the	code	(also	called	the	global	scope)

4.	The	built-in	scope	(that	contains	functions	like	len	and	str)

If	none	of	these	places	have	a	defined	variable	with	the	referenced	name,	then	a
NameError	exception	is	raised.

Assigning	a	value	to	a	variable	works	differently.	If	the	variable	is	already	defined	in	the
current	scope,	then	it	will	just	take	on	the	new	value.	If	the	variable	doesn’t	exist	in	the
current	scope,	then	Python	treats	the	assignment	as	a	variable	definition.	The	scope	of	the
newly	defined	variable	is	the	function	that	contains	the	assignment.

This	assignment	behavior	explains	the	wrong	return	value	of	the	sort_priority2
function.	The	found	variable	is	assigned	to	True	in	the	helper	closure.	The	closure’s
assignment	is	treated	as	a	new	variable	definition	within	helper,	not	as	an	assignment
within	sort_priority2.
Click	here	to	view	code	image

def	sort_priority2(numbers,	group):

				found	=	False									#	Scope:	‘sort_priority2’

				def	helper(x):

								if	x	in	group:

												found	=	True		#	Scope:	‘helper’	—	Bad!

												return	(0,	x)



								return	(1,	x)

				numbers.sort(key=helper)

				return	found

Encountering	this	problem	is	sometimes	called	the	scoping	bug	because	it	can	be	so
surprising	to	newbies.	But	this	is	the	intended	result.	This	behavior	prevents	local
variables	in	a	function	from	polluting	the	containing	module.	Otherwise,	every	assignment
within	a	function	would	put	garbage	into	the	global	module	scope.	Not	only	would	that	be
noise,	but	the	interplay	of	the	resulting	global	variables	could	cause	obscure	bugs.

Getting	Data	Out
In	Python	3,	there	is	special	syntax	for	getting	data	out	of	a	closure.	The	nonlocal
statement	is	used	to	indicate	that	scope	traversal	should	happen	upon	assignment	for	a
specific	variable	name.	The	only	limit	is	that	nonlocal	won’t	traverse	up	to	the	module-
level	scope	(to	avoid	polluting	globals).

Here,	I	define	the	same	function	again	using	nonlocal:
Click	here	to	view	code	image

def	sort_priority3(numbers,	group):

				found	=	False

				def	helper(x):

								nonlocal	found

								if	x	in	group:

												found	=	True

												return	(0,	x)

								return	(1,	x)

				numbers.sort(key=helper)

				return	found

The	nonlocal	statement	makes	it	clear	when	data	is	being	assigned	out	of	a	closure	into
another	scope.	It’s	complementary	to	the	global	statement,	which	indicates	that	a
variable’s	assignment	should	go	directly	into	the	module	scope.

However,	much	like	the	anti-pattern	of	global	variables,	I’d	caution	against	using
nonlocal	for	anything	beyond	simple	functions.	The	side	effects	of	nonlocal	can	be
hard	to	follow.	It’s	especially	hard	to	understand	in	long	functions	where	the	nonlocal
statements	and	assignments	to	associated	variables	are	far	apart.

When	your	usage	of	nonlocal	starts	getting	complicated,	it’s	better	to	wrap	your	state
in	a	helper	class.	Here,	I	define	a	class	that	achieves	the	same	result	as	the	nonlocal
approach.	It’s	a	little	longer,	but	is	much	easier	to	read	(see	Item	23:	“Accept	Functions	for
Simple	Interfaces	Instead	of	Classes”	for	details	on	the	__call__	special	method).
Click	here	to	view	code	image

class	Sorter(object):

				def	__init__(self,	group):

								self.group	=	group

								self.found	=	False

				def	__call__(self,	x):

								if	x	in	self.group:

												self.found	=	True



												return	(0,	x)

								return	(1,	x)

sorter	=	Sorter(group)

numbers.sort(key=sorter)

assert	sorter.found	is	True

Scope	in	Python	2
Unfortunately,	Python	2	doesn’t	support	the	nonlocal	keyword.	In	order	to	get	similar
behavior,	you	need	to	use	a	work-around	that	takes	advantage	of	Python’s	scoping	rules.
This	approach	isn’t	pretty,	but	it’s	the	common	Python	idiom.
Click	here	to	view	code	image

#	Python	2

def	sort_priority(numbers,	group):

				found	=	[False]

				def	helper(x):

								if	x	in	group:

												found[0]	=	True

												return	(0,	x)

								return	(1,	x)

				numbers.sort(key=helper)

				return	found[0]

As	explained	above,	Python	will	traverse	up	the	scope	where	the	found	variable	is
referenced	to	resolve	its	current	value.	The	trick	is	that	the	value	for	found	is	a	list,
which	is	mutable.	This	means	that	once	retrieved,	the	closure	can	modify	the	state	of
found	to	send	data	out	of	the	inner	scope	(with	found[0]	=	True).

This	approach	also	works	when	the	variable	used	to	traverse	the	scope	is	a	dictionary,	a
set,	or	an	instance	of	a	class	you’ve	defined.

Things	to	Remember
	Closure	functions	can	refer	to	variables	from	any	of	the	scopes	in	which	they	were
defined.

	By	default,	closures	can’t	affect	enclosing	scopes	by	assigning	variables.

	In	Python	3,	use	the	nonlocal	statement	to	indicate	when	a	closure	can	modify	a
variable	in	its	enclosing	scopes.

	In	Python	2,	use	a	mutable	value	(like	a	single-item	list)	to	work	around	the	lack	of
the	nonlocal	statement.

	Avoid	using	nonlocal	statements	for	anything	beyond	simple	functions.

Item	16:	Consider	Generators	Instead	of	Returning	Lists
The	simplest	choice	for	functions	that	produce	a	sequence	of	results	is	to	return	a	list	of
items.	For	example,	say	you	want	to	find	the	index	of	every	word	in	a	string.	Here,	I
accumulate	results	in	a	list	using	the	append	method	and	return	it	at	the	end	of	the
function:



Click	here	to	view	code	image

def	index_words(text):

				result	=	[]

				if	text:

								result.append(0)

				for	index,	letter	in	enumerate(text):

								if	letter	==	‘	‘:

												result.append(index	+	1)

				return	result

This	works	as	expected	for	some	sample	input.
Click	here	to	view	code	image

address	=	‘Four	score	and	seven	years	ago…’

result	=	index_words(address)

print(result[:3])

>>>

[0,	5,	11]

There	are	two	problems	with	the	index_words	function.

The	first	problem	is	that	the	code	is	a	bit	dense	and	noisy.	Each	time	a	new	result	is	found,
I	call	the	append	method.	The	method	call’s	bulk	(result.append)	deemphasizes	the
value	being	added	to	the	list	(index	+	1).	There	is	one	line	for	creating	the	result	list
and	another	for	returning	it.	While	the	function	body	contains	~130	characters	(without
whitespace),	only	~75	characters	are	important.

A	better	way	to	write	this	function	is	using	a	generator.	Generators	are	functions	that	use
yield	expressions.	When	called,	generator	functions	do	not	actually	run	but	instead
immediately	return	an	iterator.	With	each	call	to	the	next	built-in	function,	the	iterator
will	advance	the	generator	to	its	next	yield	expression.	Each	value	passed	to	yield	by
the	generator	will	be	returned	by	the	iterator	to	the	caller.

Here,	I	define	a	generator	function	that	produces	the	same	results	as	before:
Click	here	to	view	code	image

def	index_words_iter(text):

				if	text:

								yield	0

				for	index,	letter	in	enumerate(text):

								if	letter	==	‘	‘:

												yield	index	+	1

It’s	significantly	easier	to	read	because	all	interactions	with	the	result	list	have	been
eliminated.	Results	are	passed	to	yield	expressions	instead.	The	iterator	returned	by	the
generator	call	can	easily	be	converted	to	a	list	by	passing	it	to	the	list	built-in	function
(see	Item	9:	“Consider	Generator	Expressions	for	Large	Comprehensions”	for	how	this
works).
Click	here	to	view	code	image

result	=	list(index_words_iter(address))

The	second	problem	with	index_words	is	that	it	requires	all	results	to	be	stored	in	the
list	before	being	returned.	For	huge	inputs,	this	can	cause	your	program	to	run	out	of



memory	and	crash.	In	contrast,	a	generator	version	of	this	function	can	easily	be	adapted
to	take	inputs	of	arbitrary	length.

Here,	I	define	a	generator	that	streams	input	from	a	file	one	line	at	a	time	and	yields
outputs	one	word	at	a	time.	The	working	memory	for	this	function	is	bounded	to	the
maximum	length	of	one	line	of	input.

def	index_file(handle):

				offset	=	0

				for	line	in	handle:

								if	line:

												yield	offset

								for	letter	in	line:

												offset	+=	1

												if	letter	==	‘	‘:

															yield	offset

Running	the	generator	produces	the	same	results.
Click	here	to	view	code	image

with	open(‘/tmp/address.txt’,	‘r’)	as	f:

				it	=	index_file(f)

				results	=	islice(it,	0,	3)

				print(list(results))

>>>

[0,	5,	11]

The	only	gotcha	of	defining	generators	like	this	is	that	the	callers	must	be	aware	that	the
iterators	returned	are	stateful	and	can’t	be	reused	(see	Item	17:	“Be	Defensive	When
Iterating	Over	Arguments”).

Things	to	Remember
	Using	generators	can	be	clearer	than	the	alternative	of	returning	lists	of	accumulated
results.

	The	iterator	returned	by	a	generator	produces	the	set	of	values	passed	to	yield
expressions	within	the	generator	function’s	body.

	Generators	can	produce	a	sequence	of	outputs	for	arbitrarily	large	inputs	because
their	working	memory	doesn’t	include	all	inputs	and	outputs.

Item	17:	Be	Defensive	When	Iterating	Over	Arguments
When	a	function	takes	a	list	of	objects	as	a	parameter,	it’s	often	important	to	iterate	over
that	list	multiple	times.	For	example,	say	you	want	to	analyze	tourism	numbers	for	the
U.S.	state	of	Texas.	Imagine	the	data	set	is	the	number	of	visitors	to	each	city	(in	millions
per	year).	You’d	like	to	figure	out	what	percentage	of	overall	tourism	each	city	receives.

To	do	this	you	need	a	normalization	function.	It	sums	the	inputs	to	determine	the	total
number	of	tourists	per	year.	Then	it	divides	each	city’s	individual	visitor	count	by	the	total
to	find	that	city’s	contribution	to	the	whole.
Click	here	to	view	code	image



def	normalize(numbers):

				total	=	sum(numbers)

				result	=	[]

				for	value	in	numbers:

								percent	=	100	*	value	/	total

								result.append(percent)

				return	result

This	function	works	when	given	a	list	of	visits.
Click	here	to	view	code	image

visits	=	[15,	35,	80]

percentages	=	normalize(visits)

print(percentages)

>>>

[11.538461538461538,	26.923076923076923,	61.53846153846154]

To	scale	this	up,	I	need	to	read	the	data	from	a	file	that	contains	every	city	in	all	of	Texas.
I	define	a	generator	to	do	this	because	then	I	can	reuse	the	same	function	later	when	I	want
to	compute	tourism	numbers	for	the	whole	world,	a	much	larger	data	set	(see	Item	16:
“Consider	Generators	Instead	of	Returning	Lists”).
Click	here	to	view	code	image

def	read_visits(data_path):

				with	open(data_path)	as	f:

								for	line	in	f:

												yield	int(line)

Surprisingly,	calling	normalize	on	the	generator’s	return	value	produces	no	results.
Click	here	to	view	code	image

it	=	read_visits(‘/tmp/my_numbers.txt’)

percentages	=	normalize(it)

print(percentages)

>>>

[]

The	cause	of	this	behavior	is	that	an	iterator	only	produces	its	results	a	single	time.	If	you
iterate	over	an	iterator	or	generator	that	has	already	raised	a	StopIteration	exception,
you	won’t	get	any	results	the	second	time	around.
Click	here	to	view	code	image

it	=	read_visits(‘/tmp/my_numbers.txt’)

print(list(it))

print(list(it))		#	Already	exhausted

>>>

[15,	35,	80]

[]

What’s	confusing	is	that	you	also	won’t	get	any	errors	when	you	iterate	over	an	already
exhausted	iterator.	for	loops,	the	list	constructor,	and	many	other	functions	throughout
the	Python	standard	library	expect	the	StopIteration	exception	to	be	raised	during
normal	operation.	These	functions	can’t	tell	the	difference	between	an	iterator	that	has	no
output	and	an	iterator	that	had	output	and	is	now	exhausted.



To	solve	this	problem,	you	can	explicitly	exhaust	an	input	iterator	and	keep	a	copy	of	its
entire	contents	in	a	list.	You	can	then	iterate	over	the	list	version	of	the	data	as	many	times
as	you	need	to.	Here’s	the	same	function	as	before,	but	it	defensively	copies	the	input
iterator:
Click	here	to	view	code	image

def	normalize_copy(numbers):

				numbers	=	list(numbers)		#	Copy	the	iterator

				total	=	sum(numbers)

				result	=	[]

				for	value	in	numbers:

								percent	=	100	*	value	/	total

								result.append(percent)

				return	result

Now	the	function	works	correctly	on	a	generator’s	return	value.
Click	here	to	view	code	image

it	=	read_visits(‘/tmp/my_numbers.txt’)

percentages	=	normalize_copy(it)

print(percentages)

>>>

[11.538461538461538,	26.923076923076923,	61.53846153846154]

The	problem	with	this	approach	is	the	copy	of	the	input	iterator’s	contents	could	be	large.
Copying	the	iterator	could	cause	your	program	to	run	out	of	memory	and	crash.	One	way
around	this	is	to	accept	a	function	that	returns	a	new	iterator	each	time	it’s	called.
Click	here	to	view	code	image

def	normalize_func(get_iter):

				total	=	sum(get_iter())			#	New	iterator

				result	=	[]

				for	value	in	get_iter():		#	New	iterator

								percent	=	100	*	value	/	total

								result.append(percent)

				return	result

To	use	normalize_func,	you	can	pass	in	a	lambda	expression	that	calls	the	generator
and	produces	a	new	iterator	each	time.
Click	here	to	view	code	image

percentages	=	normalize_func(lambda:	read_visits(path))

Though	it	works,	having	to	pass	a	lambda	function	like	this	is	clumsy.	The	better	way	to
achieve	the	same	result	is	to	provide	a	new	container	class	that	implements	the	iterator
protocol.

The	iterator	protocol	is	how	Python	for	loops	and	related	expressions	traverse	the
contents	of	a	container	type.	When	Python	sees	a	statement	like	for	x	in	foo	it	will
actually	call	iter(foo).	The	iter	built-in	function	calls	the	foo.__iter__	special
method	in	turn.	The	__iter__	method	must	return	an	iterator	object	(which	itself
implements	the	__next__	special	method).	Then	the	for	loop	repeatedly	calls	the
next	built-in	function	on	the	iterator	object	until	it’s	exhausted	(and	raises	a
StopIteration	exception).



It	sounds	complicated,	but	practically	speaking	you	can	achieve	all	of	this	behavior	for
your	classes	by	implementing	the	__iter__	method	as	a	generator.	Here,	I	define	an
iterable	container	class	that	reads	the	files	containing	tourism	data:
Click	here	to	view	code	image

class	ReadVisits(object):

				def	__init__(self,	data_path):

								self.data_path	=	data_path

				def	__iter__(self):

								with	open(self.data_path)	as	f:

												for	line	in	f:

																yield	int(line)

This	new	container	type	works	correctly	when	passed	to	the	original	function	without	any
modifications.
Click	here	to	view	code	image

visits	=	ReadVisits(path)

percentages	=	normalize(visits)

print(percentages)

>>>

[11.538461538461538,	26.923076923076923,	61.53846153846154]

This	works	because	the	sum	method	in	normalize	will	call
ReadVisits.__iter__	to	allocate	a	new	iterator	object.	The	for	loop	to	normalize
the	numbers	will	also	call	__iter__	to	allocate	a	second	iterator	object.	Each	of	those
iterators	will	be	advanced	and	exhausted	independently,	ensuring	that	each	unique
iteration	sees	all	of	the	input	data	values.	The	only	downside	of	this	approach	is	that	it
reads	the	input	data	multiple	times.

Now	that	you	know	how	containers	like	ReadVisits	work,	you	can	write	your
functions	to	ensure	that	parameters	aren’t	just	iterators.	The	protocol	states	that	when	an
iterator	is	passed	to	the	iter	built-in	function,	iter	will	return	the	iterator	itself.	In
contrast,	when	a	container	type	is	passed	to	iter,	a	new	iterator	object	will	be	returned
each	time.	Thus,	you	can	test	an	input	value	for	this	behavior	and	raise	a	TypeError	to
reject	iterators.
Click	here	to	view	code	image

def	normalize_defensive(numbers):

				if	iter(numbers)	is	iter(numbers):		#	An	iterator	—	bad!

								raise	TypeError(‘Must	supply	a	container’)

				total	=	sum(numbers)

				result	=	[]

				for	value	in	numbers:

								percent	=	100	*	value	/	total

								result.append(percent)

				return	result

This	is	ideal	if	you	don’t	want	to	copy	the	full	input	iterator	like	normalize_copy
above,	but	you	also	need	to	iterate	over	the	input	data	multiple	times.	This	function	works
as	expected	for	list	and	ReadVisits	inputs	because	they	are	containers.	It	will	work
for	any	type	of	container	that	follows	the	iterator	protocol.



Click	here	to	view	code	image

visits	=	[15,	35,	80]

normalize_defensive(visits)		#	No	error

visits	=	ReadVisits(path)

normalize_defensive(visits)		#	No	error

The	function	will	raise	an	exception	if	the	input	is	iterable	but	not	a	container.
Click	here	to	view	code	image

it	=	iter(visits)

normalize_defensive(it)

>>>

TypeError:	Must	supply	a	container

Things	to	Remember
	Beware	of	functions	that	iterate	over	input	arguments	multiple	times.	If	these
arguments	are	iterators,	you	may	see	strange	behavior	and	missing	values.

	Python’s	iterator	protocol	defines	how	containers	and	iterators	interact	with	the
iter	and	next	built-in	functions,	for	loops,	and	related	expressions.

	You	can	easily	define	your	own	iterable	container	type	by	implementing	the
__iter__	method	as	a	generator.

	You	can	detect	that	a	value	is	an	iterator	(instead	of	a	container)	if	calling	iter	on
it	twice	produces	the	same	result,	which	can	then	be	progressed	with	the	next	built-
in	function.

Item	18:	Reduce	Visual	Noise	with	Variable	Positional
Arguments
Accepting	optional	positional	arguments	(often	called	star	args	in	reference	to	the
conventional	name	for	the	parameter,	*args)	can	make	a	function	call	more	clear	and
remove	visual	noise.

For	example,	say	you	want	to	log	some	debug	information.	With	a	fixed	number	of
arguments,	you	would	need	a	function	that	takes	a	message	and	a	list	of	values.
Click	here	to	view	code	image

def	log(message,	values):

				if	not	values:

								print(message)

				else:

								values_str	=	‘,	‘.join(str(x)	for	x	in	values)

								print(‘%s:	%s’	%	(message,	values_str))

log(‘My	numbers	are’,	[1,	2])

log(‘Hi	there’,	[])

>>>

My	numbers	are:	1,	2

Hi	there



Having	to	pass	an	empty	list	when	you	have	no	values	to	log	is	cumbersome	and	noisy.
It’d	be	better	to	leave	out	the	second	argument	entirely.	You	can	do	this	in	Python	by
prefixing	the	last	positional	parameter	name	with	*.	The	first	parameter	for	the	log
message	is	required,	whereas	any	number	of	subsequent	positional	arguments	are	optional.
The	function	body	doesn’t	need	to	change,	only	the	callers	do.
Click	here	to	view	code	image

def	log(message,	*values):		#	The	only	difference

				if	not	values:

								print(message)

				else:

								values_str	=	‘,	‘.join(str(x)	for	x	in	values)

								print(‘%s:	%s’	%	(message,	values_str))

log(‘My	numbers	are’,	1,	2)

log(‘Hi	there’)		#	Much	better

>>>

My	numbers	are:	1,	2

Hi	there

If	you	already	have	a	list	and	want	to	call	a	variable	argument	function	like	log,	you	can
do	this	by	using	the	*	operator.	This	instructs	Python	to	pass	items	from	the	sequence	as
positional	arguments.
Click	here	to	view	code	image

favorites	=	[7,	33,	99]

log(‘Favorite	colors’,	*favorites)

>>>

Favorite	colors:	7,	33,	99

There	are	two	problems	with	accepting	a	variable	number	of	positional	arguments.

The	first	issue	is	that	the	variable	arguments	are	always	turned	into	a	tuple	before	they	are
passed	to	your	function.	This	means	that	if	the	caller	of	your	function	uses	the	*	operator
on	a	generator,	it	will	be	iterated	until	it’s	exhausted.	The	resulting	tuple	will	include	every
value	from	the	generator,	which	could	consume	a	lot	of	memory	and	cause	your	program
to	crash.
Click	here	to	view	code	image

def	my_generator():

				for	i	in	range(10):

								yield	i

def	my_func(*args):

				print(args)

it	=	my_generator()

my_func(*it)

>>>

(0,	1,	2,	3,	4,	5,	6,	7,	8,	9)

Functions	that	accept	*args	are	best	for	situations	where	you	know	the	number	of	inputs
in	the	argument	list	will	be	reasonably	small.	It’s	ideal	for	function	calls	that	pass	many



literals	or	variable	names	together.	It’s	primarily	for	the	convenience	of	the	programmer
and	the	readability	of	the	code.
The	second	issue	with	*args	is	that	you	can’t	add	new	positional	arguments	to	your
function	in	the	future	without	migrating	every	caller.	If	you	try	to	add	a	positional
argument	in	the	front	of	the	argument	list,	existing	callers	will	subtly	break	if	they	aren’t
updated.
Click	here	to	view	code	image

def	log(sequence,	message,	*values):

				if	not	values:

								print(‘%s:	%s’	%	(sequence,	message))

				else:

								values_str	=	‘,	‘.join(str(x)	for	x	in	values)

								print(‘%s:	%s:	%s’	%	(sequence,	message,	values_str))

log(1,	‘Favorites’,	7,	33)						#	New	usage	is	OK

log(‘Favorite	numbers’,	7,	33)		#	Old	usage	breaks

>>>

1:	Favorites:	7,	33

Favorite	numbers:	7:	33

The	problem	here	is	that	the	second	call	to	log	used	7	as	the	message	parameter
because	a	sequence	argument	wasn’t	given.	Bugs	like	this	are	hard	to	track	down
because	the	code	still	runs	without	raising	any	exceptions.	To	avoid	this	possibility
entirely,	you	should	use	keyword-only	arguments	when	you	want	to	extend	functions	that
accept	*args	(see	Item	21:	“Enforce	Clarity	with	Keyword-Only	Arguments”).

Things	to	Remember
	Functions	can	accept	a	variable	number	of	positional	arguments	by	using	*args	in
the	def	statement.

	You	can	use	the	items	from	a	sequence	as	the	positional	arguments	for	a	function
with	the	*	operator.

	Using	the	*	operator	with	a	generator	may	cause	your	program	to	run	out	of
memory	and	crash.

	Adding	new	positional	parameters	to	functions	that	accept	*args	can	introduce
hard-to-find	bugs.

Item	19:	Provide	Optional	Behavior	with	Keyword
Arguments
Like	most	other	programming	languages,	calling	a	function	in	Python	allows	for	passing
arguments	by	position.
Click	here	to	view	code	image

def	remainder(number,	divisor):

				return	number	%	divisor



assert	remainder(20,	7)	==	6

All	positional	arguments	to	Python	functions	can	also	be	passed	by	keyword,	where	the
name	of	the	argument	is	used	in	an	assignment	within	the	parentheses	of	a	function	call.
The	keyword	arguments	can	be	passed	in	any	order	as	long	as	all	of	the	required	positional
arguments	are	specified.	You	can	mix	and	match	keyword	and	positional	arguments.	These
calls	are	equivalent:
Click	here	to	view	code	image

remainder(20,	7)

remainder(20,	divisor=7)

remainder(number=20,	divisor=7)

remainder(divisor=7,	number=20)

Positional	arguments	must	be	specified	before	keyword	arguments.
Click	here	to	view	code	image

remainder(number=20,	7)

>>>

SyntaxError:	non-keyword	arg	after	keyword	arg

Each	argument	can	only	be	specified	once.
Click	here	to	view	code	image

remainder(20,	number=7)

>>>

TypeError:	remainder()	got	multiple	values	for	argument	‘number’

The	flexibility	of	keyword	arguments	provides	three	significant	benefits.

The	first	advantage	is	that	keyword	arguments	make	the	function	call	clearer	to	new
readers	of	the	code.	With	the	call	remainder(20,	7),	it’s	not	evident	which	argument
is	the	number	and	which	is	the	divisor	without	looking	at	the	implementation	of	the
remainder	method.	In	the	call	with	keyword	arguments,	number=20	and
divisor=7	make	it	immediately	obvious	which	parameter	is	being	used	for	each
purpose.

The	second	impact	of	keyword	arguments	is	that	they	can	have	default	values	specified	in
the	function	definition.	This	allows	a	function	to	provide	additional	capabilities	when	you
need	them	but	lets	you	accept	the	default	behavior	most	of	the	time.	This	can	eliminate
repetitive	code	and	reduce	noise.

For	example,	say	you	want	to	compute	the	rate	of	fluid	flowing	into	a	vat.	If	the	vat	is	also
on	a	scale,	then	you	could	use	the	difference	between	two	weight	measurements	at	two
different	times	to	determine	the	flow	rate.
Click	here	to	view	code	image

def	flow_rate(weight_diff,	time_diff):

				return	weight_diff	/	time_diff

weight_diff	=	0.5

time_diff	=	3

flow	=	flow_rate(weight_diff,	time_diff)

print(‘%.3f	kg	per	second’	%	flow)



>>>

0.167	kg	per	second

In	the	typical	case,	it’s	useful	to	know	the	flow	rate	in	kilograms	per	second.	Other	times,
it’d	be	helpful	to	use	the	last	sensor	measurements	to	approximate	larger	time	scales,	like
hours	or	days.	You	can	provide	this	behavior	in	the	same	function	by	adding	an	argument
for	the	time	period	scaling	factor.
Click	here	to	view	code	image

def	flow_rate(weight_diff,	time_diff,	period):

				return	(weight_diff	/	time_diff)	*	period

The	problem	is	that	now	you	need	to	specify	the	period	argument	every	time	you	call
the	function,	even	in	the	common	case	of	flow	rate	per	second	(where	the	period	is	1).
Click	here	to	view	code	image

flow_per_second	=	flow_rate(weight_diff,	time_diff,	1)

To	make	this	less	noisy,	I	can	give	the	period	argument	a	default	value.
Click	here	to	view	code	image

def	flow_rate(weight_diff,	time_diff,	period=1):

				return	(weight_diff	/	time_diff)	*	period

The	period	argument	is	now	optional.
Click	here	to	view	code	image

flow_per_second	=	flow_rate(weight_diff,	time_diff)

flow_per_hour	=	flow_rate(weight_diff,	time_diff,	period=3600)

This	works	well	for	simple	default	values	(it	gets	tricky	for	complex	default	values—see
Item	20:	“Use	None	and	Docstrings	to	Specify	Dynamic	Default	Arguments”).

The	third	reason	to	use	keyword	arguments	is	that	they	provide	a	powerful	way	to	extend	a
function’s	parameters	while	remaining	backwards	compatible	with	existing	callers.	This
lets	you	provide	additional	functionality	without	having	to	migrate	a	lot	of	code,	reducing
the	chance	of	introducing	bugs.

For	example,	say	you	want	to	extend	the	flow_rate	function	above	to	calculate	flow
rates	in	weight	units	besides	kilograms.	You	can	do	this	by	adding	a	new	optional
parameter	that	provides	a	conversion	rate	to	your	preferred	measurement	units.
Click	here	to	view	code	image

def	flow_rate(weight_diff,	time_diff,

														period=1,	units_per_kg=1):

				return	((weight_diff	/	units_per_kg)	/	time_diff)	*	period

The	default	argument	value	for	units_per_kg	is	1,	which	makes	the	returned	weight
units	remain	as	kilograms.	This	means	that	all	existing	callers	will	see	no	change	in
behavior.	New	callers	to	flow_rate	can	specify	the	new	keyword	argument	to	see	the
new	behavior.
Click	here	to	view	code	image

pounds_per_hour	=	flow_rate(weight_diff,	time_diff,

																												period=3600,	units_per_kg=2.2)



The	only	problem	with	this	approach	is	that	optional	keyword	arguments	like	period
and	units_per_kg	may	still	be	specified	as	positional	arguments.
Click	here	to	view	code	image

pounds_per_hour	=	flow_rate(weight_diff,	time_diff,	3600,	2.2)

Supplying	optional	arguments	positionally	can	be	confusing	because	it	isn’t	clear	what	the
values	3600	and	2.2	correspond	to.	The	best	practice	is	to	always	specify	optional
arguments	using	the	keyword	names	and	never	pass	them	as	positional	arguments.

Note

Backwards	compatibility	using	optional	keyword	arguments	like	this	is	crucial	for
functions	that	accept	*args	(see	Item	18:	“Reduce	Visual	Noise	with	Variable
Positional	Arguments”).	But	an	even	better	practice	is	to	use	keyword-only
arguments	(see	Item	21:	“Enforce	Clarity	with	Keyword-Only	Arguments”).

Things	to	Remember
	Function	arguments	can	be	specified	by	position	or	by	keyword.

	Keywords	make	it	clear	what	the	purpose	of	each	argument	is	when	it	would	be
confusing	with	only	positional	arguments.

	Keyword	arguments	with	default	values	make	it	easy	to	add	new	behaviors	to	a
function,	especially	when	the	function	has	existing	callers.

	Optional	keyword	arguments	should	always	be	passed	by	keyword	instead	of	by
position.

Item	20:	Use	None	and	Docstrings	to	Specify	Dynamic
Default	Arguments
Sometimes	you	need	to	use	a	non-static	type	as	a	keyword	argument’s	default	value.	For
example,	say	you	want	to	print	logging	messages	that	are	marked	with	the	time	of	the
logged	event.	In	the	default	case,	you	want	the	message	to	include	the	time	when	the
function	was	called.	You	might	try	the	following	approach,	assuming	the	default
arguments	are	reevaluated	each	time	the	function	is	called.
Click	here	to	view	code	image

def	log(message,	when=datetime.now()):

				print(‘%s:	%s’	%	(when,	message))

log(‘Hi	there!’)

sleep(0.1)

log(‘Hi	again!’)

>>>

2014-11-15	21:10:10.371432:	Hi	there!

2014-11-15	21:10:10.371432:	Hi	again!

The	timestamps	are	the	same	because	datetime.now	is	only	executed	a	single	time:



when	the	function	is	defined.	Default	argument	values	are	evaluated	only	once	per	module
load,	which	usually	happens	when	a	program	starts	up.	After	the	module	containing	this
code	is	loaded,	the	datetime.now	default	argument	will	never	be	evaluated	again.

The	convention	for	achieving	the	desired	result	in	Python	is	to	provide	a	default	value	of
None	and	to	document	the	actual	behavior	in	the	docstring	(see	Item	49:	“Write
Docstrings	for	Every	Function,	Class,	and	Module”).	When	your	code	sees	an	argument
value	of	None,	you	allocate	the	default	value	accordingly.
Click	here	to	view	code	image

def	log(message,	when=None):

				“““Log	a	message	with	a	timestamp.

				Args:

								message:	Message	to	print.

								when:	datetime	of	when	the	message	occurred.

												Defaults	to	the	present	time.

				”””

				when	=	datetime.now()	if	when	is	None	else	when

				print(‘%s:	%s’	%	(when,	message))

Now	the	timestamps	will	be	different.
Click	here	to	view	code	image

log(‘Hi	there!’)

sleep(0.1)

log(‘Hi	again!’)

>>>

2014-11-15	21:10:10.472303:	Hi	there!

2014-11-15	21:10:10.573395:	Hi	again!

Using	None	for	default	argument	values	is	especially	important	when	the	arguments	are
mutable.	For	example,	say	you	want	to	load	a	value	encoded	as	JSON	data.	If	decoding
the	data	fails,	you	want	an	empty	dictionary	to	be	returned	by	default.	You	might	try	this
approach.
Click	here	to	view	code	image

def	decode(data,	default={}):

				try:

								return	json.loads(data)

				except	ValueError:

								return	default

The	problem	here	is	the	same	as	the	datetime.now	example	above.	The	dictionary
specified	for	default	will	be	shared	by	all	calls	to	decode	because	default	argument
values	are	only	evaluated	once	(at	module	load	time).	This	can	cause	extremely	surprising
behavior.

foo	=	decode(‘bad	data’)

foo[‘stuff’]	=	5

bar	=	decode(‘also	bad’)

bar[‘meep’]	=	1

print(‘Foo:’,	foo)

print(‘Bar:’,	bar)

>>>



Foo:	{‘stuff’:	5,	‘meep’:	1}

Bar:	{‘stuff’:	5,	‘meep’:	1}

You’d	expect	two	different	dictionaries,	each	with	a	single	key	and	value.	But	modifying
one	seems	to	also	modify	the	other.	The	culprit	is	that	foo	and	bar	are	both	equal	to	the
default	parameter.	They	are	the	same	dictionary	object.

assert	foo	is	bar

The	fix	is	to	set	the	keyword	argument	default	value	to	None	and	then	document	the
behavior	in	the	function’s	docstring.
Click	here	to	view	code	image

def	decode(data,	default=None):

				“““Load	JSON	data	from	a	string.

				Args:

								data:	JSON	data	to	decode.

								default:	Value	to	return	if	decoding	fails.

												Defaults	to	an	empty	dictionary.

				”””

				if	default	is	None:

								default	=	{}

				try:

								return	json.loads(data)

				except	ValueError:

								return	default

Now,	running	the	same	test	code	as	before	produces	the	expected	result.
foo	=	decode(‘bad	data’)

foo[‘stuff’]	=	5

bar	=	decode(‘also	bad’)

bar[‘meep’]	=	1

print(‘Foo:’,	foo)

print(‘Bar:’,	bar)

>>>

Foo:	{‘stuff’:	5}

Bar:	{‘meep’:	1}

Things	to	Remember
	Default	arguments	are	only	evaluated	once:	during	function	definition	at	module
load	time.	This	can	cause	odd	behaviors	for	dynamic	values	(like	{}	or	[]).

	Use	None	as	the	default	value	for	keyword	arguments	that	have	a	dynamic	value.
Document	the	actual	default	behavior	in	the	function’s	docstring.

Item	21:	Enforce	Clarity	with	Keyword-Only	Arguments
Passing	arguments	by	keyword	is	a	powerful	feature	of	Python	functions	(see	Item	19:
“Provide	Optional	Behavior	with	Keyword	Arguments”).	The	flexibility	of	keyword
arguments	enables	you	to	write	code	that	will	be	clear	for	your	use	cases.

For	example,	say	you	want	to	divide	one	number	by	another	but	be	very	careful	about
special	cases.	Sometimes	you	want	to	ignore	ZeroDivisionError	exceptions	and



return	infinity	instead.	Other	times,	you	want	to	ignore	OverflowError	exceptions	and
return	zero	instead.
Click	here	to	view	code	image

def	safe_division(number,	divisor,	ignore_overflow,

																		ignore_zero_division):

				try:

								return	number	/	divisor

				except	OverflowError:

								if	ignore_overflow:

												return	0

								else:

												raise

				except	ZeroDivisionError:

								if	ignore_zero_division:

												return	float(‘inf’)

								else:

												raise

Using	this	function	is	straightforward.	This	call	will	ignore	the	float	overflow	from
division	and	will	return	zero.
Click	here	to	view	code	image

result	=	safe_division(1,	10**500,	True,	False)

print(result)

>>>

0.0

This	call	will	ignore	the	error	from	dividing	by	zero	and	will	return	infinity.
Click	here	to	view	code	image

result	=	safe_division(1,	0,	False,	True)

print(result)

>>>

inf

The	problem	is	that	it’s	easy	to	confuse	the	position	of	the	two	Boolean	arguments	that
control	the	exception-ignoring	behavior.	This	can	easily	cause	bugs	that	are	hard	to	track
down.	One	way	to	improve	the	readability	of	this	code	is	to	use	keyword	arguments.	By
default,	the	function	can	be	overly	cautious	and	can	always	re-raise	exceptions.
Click	here	to	view	code	image

def	safe_division_b(number,	divisor,

																				ignore_overflow=False,

																				ignore_zero_division=False):

				#	…

Then	callers	can	use	keyword	arguments	to	specify	which	of	the	ignore	flags	they	want	to
flip	for	specific	operations,	overriding	the	default	behavior.
Click	here	to	view	code	image

safe_division_b(1,	10**500,	ignore_overflow=True)

safe_division_b(1,	0,	ignore_zero_division=True)

The	problem	is,	since	these	keyword	arguments	are	optional	behavior,	there’s	nothing
forcing	callers	of	your	functions	to	use	keyword	arguments	for	clarity.	Even	with	the	new



definition	of	safe_division_b,	you	can	still	call	it	the	old	way	with	positional
arguments.
Click	here	to	view	code	image

safe_division_b(1,	10**500,	True,	False)

With	complex	functions	like	this,	it’s	better	to	require	that	callers	are	clear	about	their
intentions.	In	Python	3,	you	can	demand	clarity	by	defining	your	functions	with	keyword-
only	arguments.	These	arguments	can	only	be	supplied	by	keyword,	never	by	position.

Here,	I	redefine	the	safe_division	function	to	accept	keyword-only	arguments.	The
*	symbol	in	the	argument	list	indicates	the	end	of	positional	arguments	and	the	beginning
of	keyword-only	arguments.
Click	here	to	view	code	image

def	safe_division_c(number,	divisor,	*,

																				ignore_overflow=False,

																				ignore_zero_division=False):

				#	…

Now,	calling	the	function	with	positional	arguments	for	the	keyword	arguments	won’t
work.
Click	here	to	view	code	image

safe_division_c(1,	10**500,	True,	False)

>>>

TypeError:	safe_division_c()	takes	2	positional	arguments	but	4	were	given

Keyword	arguments	and	their	default	values	work	as	expected.
Click	here	to	view	code	image

safe_division_c(1,	0,	ignore_zero_division=True)		#	OK

try:

				safe_division_c(1,	0)

except	ZeroDivisionError:

				pass		#	Expected

Keyword-Only	Arguments	in	Python	2
Unfortunately,	Python	2	doesn’t	have	explicit	syntax	for	specifying	keyword-only
arguments	like	Python	3.	But	you	can	achieve	the	same	behavior	of	raising	TypeErrors
for	invalid	function	calls	by	using	the	**	operator	in	argument	lists.	The	**	operator	is
similar	to	the	*	operator	(see	Item	18:	“Reduce	Visual	Noise	with	Variable	Positional
Arguments”),	except	that	instead	of	accepting	a	variable	number	of	positional	arguments,
it	accepts	any	number	of	keyword	arguments,	even	when	they’re	not	defined.
Click	here	to	view	code	image

#	Python	2

def	print_args(*args,	**kwargs):

				print	‘Positional:’,	args

				print	‘Keyword:			’,	kwargs

print_args(1,	2,	foo=‘bar’,	stuff=‘meep’)



>>>

Positional:	(1,	2)

Keyword:				{‘foo’:	‘bar’,	‘stuff’:	‘meep’}

To	make	safe_division	take	keyword-only	arguments	in	Python	2,	you	have	the
function	accept	**kwargs.	Then	you	pop	keyword	arguments	that	you	expect	out	of	the
kwargs	dictionary,	using	the	pop	method’s	second	argument	to	specify	the	default	value
when	the	key	is	missing.	Finally,	you	make	sure	there	are	no	more	keyword	arguments	left
in	kwargs	to	prevent	callers	from	supplying	arguments	that	are	invalid.
Click	here	to	view	code	image

#	Python	2

def	safe_division_d(number,	divisor,	**kwargs):

				ignore_overflow	=	kwargs.pop(‘ignore_overflow’,	False)

				ignore_zero_div	=	kwargs.pop(‘ignore_zero_division’,	False)

				if	kwargs:

								raise	TypeError(‘Unexpected	**kwargs:	%r’	%	kwargs)

				#	…

Now,	you	can	call	the	function	with	or	without	keyword	arguments.
Click	here	to	view	code	image

safe_division_d(1,	10)

safe_division_d(1,	0,	ignore_zero_division=True)

safe_division_d(1,	10**500,	ignore_overflow=True)

Trying	to	pass	keyword-only	arguments	by	position	won’t	work,	just	like	in	Python	3.
Click	here	to	view	code	image

safe_division_d(1,	0,	False,	True)

>>>

TypeError:	safe_division_d()	takes	2	positional	arguments	but	4	were	given

Trying	to	pass	unexpected	keyword	arguments	also	won’t	work.
Click	here	to	view	code	image

safe_division_d(0,	0,	unexpected=True)

>>>

TypeError:	Unexpected	**kwargs:	{‘unexpected’:	True}

Things	to	Remember
	Keyword	arguments	make	the	intention	of	a	function	call	more	clear.

	Use	keyword-only	arguments	to	force	callers	to	supply	keyword	arguments	for
potentially	confusing	functions,	especially	those	that	accept	multiple	Boolean	flags.

	Python	3	supports	explicit	syntax	for	keyword-only	arguments	in	functions.

	Python	2	can	emulate	keyword-only	arguments	for	functions	by	using	**kwargs
and	manually	raising	TypeError	exceptions.



3.	Classes	and	Inheritance

As	an	object-oriented	programming	language,	Python	supports	a	full	range	of	features,
such	as	inheritance,	polymorphism,	and	encapsulation.	Getting	things	done	in	Python
often	requires	writing	new	classes	and	defining	how	they	interact	through	their	interfaces
and	hierarchies.

Python’s	classes	and	inheritance	make	it	easy	to	express	your	program’s	intended
behaviors	with	objects.	They	allow	you	to	improve	and	expand	functionality	over	time.
They	provide	flexibility	in	an	environment	of	changing	requirements.	Knowing	how	to	use
them	well	enables	you	to	write	maintainable	code.

Item	22:	Prefer	Helper	Classes	Over	Bookkeeping	with
Dictionaries	and	Tuples
Python’s	built-in	dictionary	type	is	wonderful	for	maintaining	dynamic	internal	state	over
the	lifetime	of	an	object.	By	dynamic,	I	mean	situations	in	which	you	need	to	do
bookkeeping	for	an	unexpected	set	of	identifiers.	For	example,	say	you	want	to	record	the
grades	of	a	set	of	students	whose	names	aren’t	known	in	advance.	You	can	define	a	class
to	store	the	names	in	a	dictionary	instead	of	using	a	predefined	attribute	for	each	student.
Click	here	to	view	code	image

class	SimpleGradebook(object):

				def	__init__(self):

								self._grades	=	{}

				def	add_student(self,	name):

								self._grades[name]	=	[]

				def	report_grade(self,	name,	score):

								self._grades[name].append(score)

				def	average_grade(self,	name):

								grades	=	self._grades[name]

								return	sum(grades)	/	len(grades)

Using	the	class	is	simple.
Click	here	to	view	code	image

book	=	SimpleGradebook()

book.add_student(‘Isaac	Newton’)

book.report_grade(‘Isaac	Newton’,	90)

#	…

print(book.average_grade(‘Isaac	Newton’))

>>>

90.0

Dictionaries	are	so	easy	to	use	that	there’s	a	danger	of	overextending	them	to	write	brittle
code.	For	example,	say	you	want	to	extend	the	SimpleGradebook	class	to	keep	a	list
of	grades	by	subject,	not	just	overall.	You	can	do	this	by	changing	the	_grades
dictionary	to	map	student	names	(the	keys)	to	yet	another	dictionary	(the	values).	The



innermost	dictionary	will	map	subjects	(the	keys)	to	grades	(the	values).
Click	here	to	view	code	image

class	BySubjectGradebook(object):

				def	__init__(self):

								self._grades	=	{}

				def	add_student(self,	name):

								self._grades[name]	=	{}

This	seems	straightforward	enough.	The	report_grade	and	average_grade
methods	will	gain	quite	a	bit	of	complexity	to	deal	with	the	multilevel	dictionary,	but	it’s
manageable.
Click	here	to	view	code	image

def	report_grade(self,	name,	subject,	grade):

								by_subject	=	self._grades[name]

								grade_list	=	by_subject.setdefault(subject,	[])

								grade_list.append(grade)

				def	average_grade(self,	name):

								by_subject	=	self._grades[name]

								total,	count	=	0,	0

								for	grades	in	by_subject.values():

												total	+=	sum(grades)

												count	+=	len(grades)

								return	total	/	count

Using	the	class	remains	simple.
Click	here	to	view	code	image

book	=	BySubjectGradebook()

book.add_student(‘Albert	Einstein’)

book.report_grade(‘Albert	Einstein’,	‘Math’,	75)

book.report_grade(‘Albert	Einstein’,	‘Math’,	65)

book.report_grade(‘Albert	Einstein’,	‘Gym’,	90)

book.report_grade(‘Albert	Einstein’,	‘Gym’,	95)

Now,	imagine	your	requirements	change	again.	You	also	want	to	track	the	weight	of	each
score	toward	the	overall	grade	in	the	class	so	midterms	and	finals	are	more	important	than
pop	quizzes.	One	way	to	implement	this	feature	is	to	change	the	innermost	dictionary;
instead	of	mapping	subjects	(the	keys)	to	grades	(the	values),	I	can	use	the	tuple
(score,	weight)	as	values.
Click	here	to	view	code	image

class	WeightedGradebook(object):

				#	…

				def	report_grade(self,	name,	subject,	score,	weight):

								by_subject	=	self._grades[name]

								grade_list	=	by_subject.setdefault(subject,	[])

								grade_list.append((score,	weight))

Although	the	changes	to	report_grade	seem	simple—just	make	the	value	a	tuple—the
average_grade	method	now	has	a	loop	within	a	loop	and	is	difficult	to	read.
Click	here	to	view	code	image

def	average_grade(self,	name):

							by_subject	=	self._grades[name]



							score_sum,	score_count	=	0,	0

							for	subject,	scores	in	by_subject.items():

											subject_avg,	total_weight	=	0,	0

											for	score,	weight	in	scores:

															#	…

							return	score_sum	/	score_count

Using	the	class	has	also	gotten	more	difficult.	It’s	unclear	what	all	of	the	numbers	in	the
positional	arguments	mean.
Click	here	to	view	code	image

book.report_grade(‘Albert	Einstein’,	‘Math’,	80,	0.10)

When	you	see	complexity	like	this	happen,	it’s	time	to	make	the	leap	from	dictionaries
and	tuples	to	a	hierarchy	of	classes.

At	first,	you	didn’t	know	you’d	need	to	support	weighted	grades,	so	the	complexity	of
additional	helper	classes	seemed	unwarranted.	Python’s	built-in	dictionary	and	tuple	types
made	it	easy	to	keep	going,	adding	layer	after	layer	to	the	internal	bookkeeping.	But	you
should	avoid	doing	this	for	more	than	one	level	of	nesting	(i.e.,	avoid	dictionaries	that
contain	dictionaries).	It	makes	your	code	hard	to	read	by	other	programmers	and	sets	you
up	for	a	maintenance	nightmare.

As	soon	as	you	realize	the	bookkeeping	is	getting	complicated,	break	it	all	out	into	classes.
This	lets	you	provide	well-defined	interfaces	that	better	encapsulate	your	data.	This	also
enables	you	to	create	a	layer	of	abstraction	between	your	interfaces	and	your	concrete
implementations.

Refactoring	to	Classes
You	can	start	moving	to	classes	at	the	bottom	of	the	dependency	tree:	a	single	grade.	A
class	seems	too	heavyweight	for	such	simple	information.	A	tuple,	though,	seems
appropriate	because	grades	are	immutable.	Here,	I	use	the	tuple	(score,	weight)	to
track	grades	in	a	list:
Click	here	to	view	code	image

grades	=	[]

grades.append((95,	0.45))

#	…

total	=	sum(score	*	weight	for	score,	weight	in	grades)

total_weight	=	sum(weight	for	_,	weight	in	grades)

average_grade	=	total	/	total_weight

The	problem	is	that	plain	tuples	are	positional.	When	you	want	to	associate	more
information	with	a	grade,	like	a	set	of	notes	from	the	teacher,	you’ll	need	to	rewrite	every
usage	of	the	two-tuple	to	be	aware	that	there	are	now	three	items	present	instead	of	two.
Here,	I	use	_	(the	underscore	variable	name,	a	Python	convention	for	unused	variables)	to
capture	the	third	entry	in	the	tuple	and	just	ignore	it:
Click	here	to	view	code	image

grades	=	[]

grades.append((95,	0.45,	‘Great	job’))

#	…

total	=	sum(score	*	weight	for	score,	weight,	_	in	grades)



total_weight	=	sum(weight	for	_,	weight,	_	in	grades)

average_grade	=	total	/	total_weight

This	pattern	of	extending	tuples	longer	and	longer	is	similar	to	deepening	layers	of
dictionaries.	As	soon	as	you	find	yourself	going	longer	than	a	two-tuple,	it’s	time	to
consider	another	approach.

The	namedtuple	type	in	the	collections	module	does	exactly	what	you	need.	It
lets	you	easily	define	tiny,	immutable	data	classes.
Click	here	to	view	code	image

import	collections

Grade	=	collections.namedtuple(‘Grade’,	(‘score’,	‘weight’))

These	classes	can	be	constructed	with	positional	or	keyword	arguments.	The	fields	are
accessible	with	named	attributes.	Having	named	attributes	makes	it	easy	to	move	from	a
namedtuple	to	your	own	class	later	if	your	requirements	change	again	and	you	need	to
add	behaviors	to	the	simple	data	containers.

Limitations	of	namedtuple

Although	useful	in	many	circumstances,	it’s	important	to	understand	when
namedtuple	can	cause	more	harm	than	good.

	You	can’t	specify	default	argument	values	for	namedtuple	classes.	This	makes
them	unwieldy	when	your	data	may	have	many	optional	properties.	If	you	find
yourself	using	more	than	a	handful	of	attributes,	defining	your	own	class	may	be	a
better	choice.

	The	attribute	values	of	namedtuple	instances	are	still	accessible	using	numerical
indexes	and	iteration.	Especially	in	externalized	APIs,	this	can	lead	to	unintentional
usage	that	makes	it	harder	to	move	to	a	real	class	later.	If	you’re	not	in	control	of	all
of	the	usage	of	your	namedtuple	instances,	it’s	better	to	define	your	own	class.

Next,	you	can	write	a	class	to	represent	a	single	subject	that	contains	a	set	of	grades.
Click	here	to	view	code	image

class	Subject(object):

				def	__init__(self):

								self._grades	=	[]

				def	report_grade(self,	score,	weight):

								self._grades.append(Grade(score,	weight))

				def	average_grade(self):

								total,	total_weight	=	0,	0

								for	grade	in	self._grades:

												total	+=	grade.score	*	grade.weight

												total_weight	+=	grade.weight

								return	total	/	total_weight

Then	you	would	write	a	class	to	represent	a	set	of	subjects	that	are	being	studied	by	a
single	student.
Click	here	to	view	code	image



class	Student(object):

				def	__init__(self):

								self._subjects	=	{}

				def	subject(self,	name):

								if	name	not	in	self._subjects:

												self._subjects[name]	=	Subject()

								return	self._subjects[name]

				def	average_grade(self):

								total,	count	=	0,	0

								for	subject	in	self._subjects.values():

												total	+=	subject.average_grade()

												count	+=	1

								return	total	/	count

Finally,	you’d	write	a	container	for	all	of	the	students	keyed	dynamically	by	their	names.
Click	here	to	view	code	image

class	Gradebook(object):

				def	__init__(self):

								self._students	=	{}

				def	student(self,	name):

								if	name	not	in	self._students:

												self._students[name]	=	Student()

								return	self._students[name]

The	line	count	of	these	classes	is	almost	double	the	previous	implementation’s	size.	But
this	code	is	much	easier	to	read.	The	example	driving	the	classes	is	also	more	clear	and
extensible.
Click	here	to	view	code	image

book	=	Gradebook()

albert	=	book.student(‘Albert	Einstein’)

math	=	albert.subject(‘Math’)

math.report_grade(80,	0.10)

#	…

print(albert.average_grade())

>>>

81.5

If	necessary,	you	can	write	backwards-compatible	methods	to	help	migrate	usage	of	the
old	API	style	to	the	new	hierarchy	of	objects.

Things	to	Remember
	Avoid	making	dictionaries	with	values	that	are	other	dictionaries	or	long	tuples.

	Use	namedtuple	for	lightweight,	immutable	data	containers	before	you	need	the
flexibility	of	a	full	class.

	Move	your	bookkeeping	code	to	use	multiple	helper	classes	when	your	internal	state
dictionaries	get	complicated.



Item	23:	Accept	Functions	for	Simple	Interfaces	Instead	of
Classes
Many	of	Python’s	built-in	APIs	allow	you	to	customize	behavior	by	passing	in	a	function.
These	hooks	are	used	by	APIs	to	call	back	your	code	while	they	execute.	For	example,	the
list	type’s	sort	method	takes	an	optional	key	argument	that’s	used	to	determine	each
index’s	value	for	sorting.	Here,	I	sort	a	list	of	names	based	on	their	lengths	by	providing	a
lambda	expression	as	the	key	hook:
Click	here	to	view	code	image

names	=	[‘Socrates’,	‘Archimedes’,	‘Plato’,	‘Aristotle’]

names.sort(key=lambda	x:	len(x))

print(names)

>>>

[‘Plato’,	‘Socrates’,	‘Aristotle’,	‘Archimedes’]

In	other	languages,	you	might	expect	hooks	to	be	defined	by	an	abstract	class.	In	Python,
many	hooks	are	just	stateless	functions	with	well-defined	arguments	and	return	values.
Functions	are	ideal	for	hooks	because	they	are	easier	to	describe	and	simpler	to	define
than	classes.	Functions	work	as	hooks	because	Python	has	first-class	functions:	Functions
and	methods	can	be	passed	around	and	referenced	like	any	other	value	in	the	language.

For	example,	say	you	want	to	customize	the	behavior	of	the	defaultdict	class	(see
Item	46:	“Use	Built-in	Algorithms	and	Data	Structures”	for	details).	This	data	structure
allows	you	to	supply	a	function	that	will	be	called	each	time	a	missing	key	is	accessed.
The	function	must	return	the	default	value	the	missing	key	should	have	in	the	dictionary.
Here,	I	define	a	hook	that	logs	each	time	a	key	is	missing	and	returns	0	for	the	default
value:

def	log_missing():

			print(‘Key	added’)

			return	0

Given	an	initial	dictionary	and	a	set	of	desired	increments,	I	can	cause	the
log_missing	function	to	run	and	print	twice	(for	'red'	and	'orange').
Click	here	to	view	code	image

current	=	{‘green’:	12,	‘blue’:	3}

increments	=	[

				(‘red’,	5),

				(‘blue’,	17),

				(‘orange’,	9),

]

result	=	defaultdict(log_missing,	current)

print(‘Before:’,	dict(result))

for	key,	amount	in	increments:

				result[key]	+=	amount

print(‘After:	‘,	dict(result))

>>>

Before:	{‘green’:	12,	‘blue’:	3}

Key	added

Key	added



After:		{‘orange’:	9,	‘green’:	12,	‘blue’:	20,	‘red’:	5}

Supplying	functions	like	log_missing	makes	APIs	easy	to	build	and	test	because	it
separates	side	effects	from	deterministic	behavior.	For	example,	say	you	now	want	the
default	value	hook	passed	to	defaultdict	to	count	the	total	number	of	keys	that	were
missing.	One	way	to	achieve	this	is	using	a	stateful	closure	(see	Item	15:	“Know	How
Closures	Interact	with	Variable	Scope”	for	details).	Here,	I	define	a	helper	function	that
uses	such	a	closure	as	the	default	value	hook:
Click	here	to	view	code	image

def	increment_with_report(current,	increments):

				added_count	=	0

				def	missing():

								nonlocal	added_count		#	Stateful	closure

								added_count	+=	1

								return	0

				result	=	defaultdict(missing,	current)

				for	key,	amount	in	increments:

								result[key]	+=	amount

				return	result,	added_count

Running	this	function	produces	the	expected	result	(2),	even	though	the	defaultdict
has	no	idea	that	the	missing	hook	maintains	state.	This	is	another	benefit	of	accepting
simple	functions	for	interfaces.	It’s	easy	to	add	functionality	later	by	hiding	state	in	a
closure.
Click	here	to	view	code	image

result,	count	=	increment_with_report(current,	increments)

assert	count	==	2

The	problem	with	defining	a	closure	for	stateful	hooks	is	that	it’s	harder	to	read	than	the
stateless	function	example.	Another	approach	is	to	define	a	small	class	that	encapsulates
the	state	you	want	to	track.

class	CountMissing(object):

				def	__init__(self):

								self.added	=	0

				def	missing(self):

								self.added	+=	1

								return	0

In	other	languages,	you	might	expect	that	now	defaultdict	would	have	to	be
modified	to	accommodate	the	interface	of	CountMissing.	But	in	Python,	thanks	to
first-class	functions,	you	can	reference	the	CountMissing.missing	method	directly
on	an	object	and	pass	it	to	defaultdict	as	the	default	value	hook.	It’s	trivial	to	have	a
method	satisfy	a	function	interface.
Click	here	to	view	code	image

counter	=	CountMissing()

result	=	defaultdict(counter.missing,	current)		#	Method	ref

for	key,	amount	in	increments:



				result[key]	+=	amount

assert	counter.added	==	2

Using	a	helper	class	like	this	to	provide	the	behavior	of	a	stateful	closure	is	clearer	than
the	increment_with_report	function	above.	However,	in	isolation	it’s	still	not
immediately	obvious	what	the	purpose	of	the	CountMissing	class	is.	Who	constructs	a
CountMissing	object?	Who	calls	the	missing	method?	Will	the	class	need	other
public	methods	to	be	added	in	the	future?	Until	you	see	its	usage	with	defaultdict,
the	class	is	a	mystery.

To	clarify	this	situation,	Python	allows	classes	to	define	the	__call__	special	method.
__call__	allows	an	object	to	be	called	just	like	a	function.	It	also	causes	the
callable	built-in	function	to	return	True	for	such	an	instance.
Click	here	to	view	code	image

class	BetterCountMissing(object):

				def	__init__(self):

								self.added	=	0

				def	__call__(self):

								self.added	+=	1

								return	0

counter	=	BetterCountMissing()

counter()

assert	callable(counter)

Here,	I	use	a	BetterCountMissing	instance	as	the	default	value	hook	for	a
defaultdict	to	track	the	number	of	missing	keys	that	were	added:
Click	here	to	view	code	image

counter	=	BetterCountMissing()

result	=	defaultdict(counter,	current)		#	Relies	on	__call__

for	key,	amount	in	increments:

				result[key]	+=	amount

assert	counter.added	==	2

This	is	much	clearer	than	the	CountMissing.missing	example.	The	__call__
method	indicates	that	a	class’s	instances	will	be	used	somewhere	a	function	argument
would	also	be	suitable	(like	API	hooks).	It	directs	new	readers	of	the	code	to	the	entry
point	that’s	responsible	for	the	class’s	primary	behavior.	It	provides	a	strong	hint	that	the
goal	of	the	class	is	to	act	as	a	stateful	closure.

Best	of	all,	defaultdict	still	has	no	view	into	what’s	going	on	when	you	use
__call__.	All	that	defaultdict	requires	is	a	function	for	the	default	value	hook.
Python	provides	many	different	ways	to	satisfy	a	simple	function	interface	depending	on
what	you	need	to	accomplish.

Things	to	Remember
	Instead	of	defining	and	instantiating	classes,	functions	are	often	all	you	need	for
simple	interfaces	between	components	in	Python.

	References	to	functions	and	methods	in	Python	are	first	class,	meaning	they	can	be



used	in	expressions	like	any	other	type.

	The	__call__	special	method	enables	instances	of	a	class	to	be	called	like	plain
Python	functions.

	When	you	need	a	function	to	maintain	state,	consider	defining	a	class	that	provides
the	__call__	method	instead	of	defining	a	stateful	closure	(see	Item	15:	“Know
How	Closures	Interact	with	Variable	Scope”).

Item	24:	Use	@classmethod	Polymorphism	to	Construct
Objects	Generically
In	Python,	not	only	do	the	objects	support	polymorphism,	but	the	classes	do	as	well.	What
does	that	mean,	and	what	is	it	good	for?

Polymorphism	is	a	way	for	multiple	classes	in	a	hierarchy	to	implement	their	own	unique
versions	of	a	method.	This	allows	many	classes	to	fulfill	the	same	interface	or	abstract
base	class	while	providing	different	functionality	(see	Item	28:	“Inherit	from
collections.abc	for	Custom	Container	Types”	for	an	example).

For	example,	say	you’re	writing	a	MapReduce	implementation	and	you	want	a	common
class	to	represent	the	input	data.	Here,	I	define	such	a	class	with	a	read	method	that	must
be	defined	by	subclasses:
Click	here	to	view	code	image

class	InputData(object):

				def	read(self):

								raise	NotImplementedError

Here,	I	have	a	concrete	subclass	of	InputData	that	reads	data	from	a	file	on	disk:
Click	here	to	view	code	image

class	PathInputData(InputData):

				def	__init__(self,	path):

								super().__init__()

								self.path	=	path

				def	read(self):

								return	open(self.path).read()

You	could	have	any	number	of	InputData	subclasses	like	PathInputData	and	each
of	them	could	implement	the	standard	interface	for	read	to	return	the	bytes	of	data	to
process.	Other	InputData	subclasses	could	read	from	the	network,	decompress	data
transparently,	etc.

You’d	want	a	similar	abstract	interface	for	the	MapReduce	worker	that	consumes	the	input
data	in	a	standard	way.
Click	here	to	view	code	image

class	Worker(object):

				def	__init__(self,	input_data):

								self.input_data	=	input_data

								self.result	=	None



				def	map(self):

								raise	NotImplementedError

				def	reduce(self,	other):

								raise	NotImplementedError

Here,	I	define	a	concrete	subclass	of	Worker	to	implement	the	specific	MapReduce
function	I	want	to	apply:	a	simple	newline	counter:
Click	here	to	view	code	image

class	LineCountWorker(Worker):

				def	map(self):

								data	=	self.input_data.read()

								self.result	=	data.count(‘\n’)

				def	reduce(self,	other):

								self.result	+=	other.result

It	may	look	like	this	implementation	is	going	great,	but	I’ve	reached	the	biggest	hurdle	in
all	of	this.	What	connects	all	of	these	pieces?	I	have	a	nice	set	of	classes	with	reasonable
interfaces	and	abstractions—but	that’s	only	useful	once	the	objects	are	constructed.
What’s	responsible	for	building	the	objects	and	orchestrating	the	MapReduce?

The	simplest	approach	is	to	manually	build	and	connect	the	objects	with	some	helper
functions.	Here,	I	list	the	contents	of	a	directory	and	construct	a	PathInputData
instance	for	each	file	it	contains:
Click	here	to	view	code	image

def	generate_inputs(data_dir):

				for	name	in	os.listdir(data_dir):

								yield	PathInputData(os.path.join(data_dir,	name))

Next,	I	create	the	LineCountWorker	instances	using	the	InputData	instances
returned	by	generate_inputs.
Click	here	to	view	code	image

def	create_workers(input_list):

				workers	=	[]

				for	input_data	in	input_list:

								workers.append(LineCountWorker(input_data))

				return	workers

I	execute	these	Worker	instances	by	fanning	out	the	map	step	to	multiple	threads	(see
Item	37:	“Use	Threads	for	Blocking	I/O,	Avoid	for	Parallelism”).	Then,	I	call	reduce
repeatedly	to	combine	the	results	into	one	final	value.
Click	here	to	view	code	image

def	execute(workers):

				threads	=	[Thread(target=w.map)	for	w	in	workers]

				for	thread	in	threads:	thread.start()

				for	thread	in	threads:	thread.join()

				first,	rest	=	workers[0],	workers[1:]

				for	worker	in	rest:

								first.reduce(worker)

				return	first.result



Finally,	I	connect	all	of	the	pieces	together	in	a	function	to	run	each	step.
Click	here	to	view	code	image

def	mapreduce(data_dir):

				inputs	=	generate_inputs(data_dir)

				workers	=	create_workers(inputs)

				return	execute(workers)

Running	this	function	on	a	set	of	test	input	files	works	great.
Click	here	to	view	code	image

from	tempfile	import	TemporaryDirectory

def	write_test_files(tmpdir):

				#	…

with	TemporaryDirectory()	as	tmpdir:

				write_test_files(tmpdir)

				result	=	mapreduce(tmpdir)

print(‘There	are’,	result,	‘lines’)

>>>

There	are	4360	lines

What’s	the	problem?	The	huge	issue	is	the	mapreduce	function	is	not	generic	at	all.	If
you	want	to	write	another	InputData	or	Worker	subclass,	you	would	also	have	to
rewrite	the	generate_inputs,	create_workers,	and	mapreduce	functions	to
match.

This	problem	boils	down	to	needing	a	generic	way	to	construct	objects.	In	other
languages,	you’d	solve	this	problem	with	constructor	polymorphism,	requiring	that	each
InputData	subclass	provides	a	special	constructor	that	can	be	used	generically	by	the
helper	methods	that	orchestrate	the	MapReduce.	The	trouble	is	that	Python	only	allows	for
the	single	constructor	method	__init__.	It’s	unreasonable	to	require	every
InputData	subclass	to	have	a	compatible	constructor.

The	best	way	to	solve	this	problem	is	with	@classmethod	polymorphism.	This	is
exactly	like	the	instance	method	polymorphism	I	used	for	InputData.read,	except
that	it	applies	to	whole	classes	instead	of	their	constructed	objects.

Let	me	apply	this	idea	to	the	MapReduce	classes.	Here,	I	extend	the	InputData	class
with	a	generic	class	method	that’s	responsible	for	creating	new	InputData	instances
using	a	common	interface:
Click	here	to	view	code	image

class	GenericInputData(object):

				def	read(self):

								raise	NotImplementedError

				@classmethod

				def	generate_inputs(cls,	config):

								raise	NotImplementedError

I	have	generate_inputs	take	a	dictionary	with	a	set	of	configuration	parameters	that
are	up	to	the	InputData	concrete	subclass	to	interpret.	Here,	I	use	the	config	to	find



the	directory	to	list	for	input	files:
Click	here	to	view	code	image

class	PathInputData(GenericInputData):

				#	…

				def	read(self):

								return	open(self.path).read()

				@classmethod

				def	generate_inputs(cls,	config):

								data_dir	=	config[‘data_dir’]

								for	name	in	os.listdir(data_dir):

												yield	cls(os.path.join(data_dir,	name))

Similarly,	I	can	make	the	create_workers	helper	part	of	the	GenericWorker	class.
Here,	I	use	the	input_class	parameter,	which	must	be	a	subclass	of
GenericInputData,	to	generate	the	necessary	inputs.	I	construct	instances	of	the
GenericWorker	concrete	subclass	using	cls()	as	a	generic	constructor.
Click	here	to	view	code	image

class	GenericWorker(object):

				#	…

				def	map(self):

								raise	NotImplementedError

				def	reduce(self,	other):

								raise	NotImplementedError

				@classmethod

				def	create_workers(cls,	input_class,	config):

								workers	=	[]

								for	input_data	in	input_class.generate_inputs(config):

												workers.append(cls(input_data))

								return	workers

Note	that	the	call	to	input_class.generate_inputs	above	is	the	class
polymorphism	I’m	trying	to	show.	You	can	also	see	how	create_workers	calling	cls
provides	an	alternate	way	to	construct	GenericWorker	objects	besides	using	the
__init__	method	directly.

The	effect	on	my	concrete	GenericWorker	subclass	is	nothing	more	than	changing	its
parent	class.
Click	here	to	view	code	image

class	LineCountWorker(GenericWorker):

				#	…

And	finally,	I	can	rewrite	the	mapreduce	function	to	be	completely	generic.
Click	here	to	view	code	image

def	mapreduce(worker_class,	input_class,	config):

				workers	=	worker_class.create_workers(input_class,	config)

				return	execute(workers)

Running	the	new	worker	on	a	set	of	test	files	produces	the	same	result	as	the	old
implementation.	The	difference	is	that	the	mapreduce	function	requires	more
parameters	so	that	it	can	operate	generically.



Click	here	to	view	code	image

with	TemporaryDirectory()	as	tmpdir:

				write_test_files(tmpdir)

				config	=	{‘data_dir’:	tmpdir}

				result	=	mapreduce(LineCountWorker,	PathInputData,	config)

Now	you	can	write	other	GenericInputData	and	GenericWorker	classes	as	you
wish	and	not	have	to	rewrite	any	of	the	glue	code.

Things	to	Remember
	Python	only	supports	a	single	constructor	per	class,	the	__init__	method.

	Use	@classmethod	to	define	alternative	constructors	for	your	classes.

	Use	class	method	polymorphism	to	provide	generic	ways	to	build	and	connect
concrete	subclasses.

Item	25:	Initialize	Parent	Classes	with	super
The	old	way	to	initialize	a	parent	class	from	a	child	class	is	to	directly	call	the	parent
class’s	__init__	method	with	the	child	instance.
Click	here	to	view	code	image

class	MyBaseClass(object):

				def	__init__(self,	value):

								self.value	=	value

class	MyChildClass(MyBaseClass):

				def	__init__(self):

								MyBaseClass.__init__(self,	5)

This	approach	works	fine	for	simple	hierarchies	but	breaks	down	in	many	cases.

If	your	class	is	affected	by	multiple	inheritance	(something	to	avoid	in	general;	see	Item
26:	“Use	Multiple	Inheritance	Only	for	Mix-in	Utility	Classes”),	calling	the	superclasses’
__init__	methods	directly	can	lead	to	unpredictable	behavior.

One	problem	is	that	the	__init__	call	order	isn’t	specified	across	all	subclasses.	For
example,	here	I	define	two	parent	classes	that	operate	on	the	instance’s	value	field:

class	TimesTwo(object):

				def	__init__(self):

								self.value	*=	2

class	PlusFive(object):

				def	__init__(self):

								self.value	+=	5

This	class	defines	its	parent	classes	in	one	ordering.
Click	here	to	view	code	image

class	OneWay(MyBaseClass,	TimesTwo,	PlusFive):

				def	__init__(self,	value):

								MyBaseClass.__init__(self,	value)

								TimesTwo.__init__(self)

								PlusFive.__init__(self)



And	constructing	it	produces	a	result	that	matches	the	parent	class	ordering.
Click	here	to	view	code	image

foo	=	OneWay(5)

print(‘First	ordering	is	(5	*	2)	+	5	=’,	foo.value)

>>>

First	ordering	is	(5	*	2)	+	5	=	15

Here’s	another	class	that	defines	the	same	parent	classes	but	in	a	different	ordering:
Click	here	to	view	code	image

class	AnotherWay(MyBaseClass,	PlusFive,	TimesTwo):

				def	__init__(self,	value):

								MyBaseClass.__init__(self,	value)

								TimesTwo.__init__(self)

								PlusFive.__init__(self)

However,	I	left	the	calls	to	the	parent	class	constructors	PlusFive.__init__	and
TimesTwo.__init__	in	the	same	order	as	before,	causing	this	class’s	behavior	not	to
match	the	order	of	the	parent	classes	in	its	definition.
Click	here	to	view	code	image

bar	=	AnotherWay(5)

print(‘Second	ordering	still	is’,	bar.value)

>>>

Second	ordering	still	is	15

Another	problem	occurs	with	diamond	inheritance.	Diamond	inheritance	happens	when	a
subclass	inherits	from	two	separate	classes	that	have	the	same	superclass	somewhere	in
the	hierarchy.	Diamond	inheritance	causes	the	common	superclass’s	__init__	method
to	run	multiple	times,	causing	unexpected	behavior.	For	example,	here	I	define	two	child
classes	that	inherit	from	MyBaseClass.
Click	here	to	view	code	image

class	TimesFive(MyBaseClass):

				def	__init__(self,	value):

								MyBaseClass.__init__(self,	value)

								self.value	*=	5

class	PlusTwo(MyBaseClass):

				def	__init__(self,	value):

								MyBaseClass.__init__(self,	value)

								self.value	+=	2

Then,	I	define	a	child	class	that	inherits	from	both	of	these	classes,	making
MyBaseClass	the	top	of	the	diamond.
Click	here	to	view	code	image

class	ThisWay(TimesFive,	PlusTwo):

				def	__init__(self,	value):

								TimesFive.__init__(self,	value)

								PlusTwo.__init__(self,	value)

foo	=	ThisWay(5)

print(‘Should	be	(5	*	5)	+	2	=	27	but	is’,	foo.value)



>>>

Should	be	(5	*	5)	+	2	=	27	but	is	7

The	output	should	be	27	because	(5	*	5)	+	2	=	27.	But	the	call	to	the	second
parent	class’s	constructor,	PlusTwo.__init__,	causes	self.value	to	be	reset	back
to	5	when	MyBaseClass.__init__	gets	called	a	second	time.

To	solve	these	problems,	Python	2.2	added	the	super	built-in	function	and	defined	the
method	resolution	order	(MRO).	The	MRO	standardizes	which	superclasses	are	initialized
before	others	(e.g.,	depth-first,	left-to-right).	It	also	ensures	that	common	superclasses	in
diamond	hierarchies	are	only	run	once.

Here,	I	create	a	diamond-shaped	class	hierarchy	again,	but	this	time	I	use	super	(in	the
Python	2	style)	to	initialize	the	parent	class:
Click	here	to	view	code	image

#	Python	2

class	TimesFiveCorrect(MyBaseClass):

				def	__init__(self,	value):

								super(TimesFiveCorrect,	self).__init__(value)

								self.value	*=	5

class	PlusTwoCorrect(MyBaseClass):

				def	__init__(self,	value):

								super(PlusTwoCorrect,	self).__init__(value)

								self.value	+=	2

Now	the	top	part	of	the	diamond,	MyBaseClass.__init__,	is	only	run	a	single	time.
The	other	parent	classes	are	run	in	the	order	specified	in	the	class	statement.
Click	here	to	view	code	image

#	Python	2

class	GoodWay(TimesFiveCorrect,	PlusTwoCorrect):

				def	__init__(self,	value):

								super(GoodWay,	self).__init__(value)

foo	=	GoodWay(5)

print	‘Should	be	5	*	(5	+	2)	=	35	and	is’,	foo.value

>>>

Should	be	5	*	(5	+	2)	=	35	and	is	35

This	order	may	seem	backwards	at	first.	Shouldn’t	TimesFiveCorrect.__init__
have	run	first?	Shouldn’t	the	result	be	(5	*	5)	+	2	=	27?	The	answer	is	no.	This
ordering	matches	what	the	MRO	defines	for	this	class.	The	MRO	ordering	is	available	on
a	class	method	called	mro.
Click	here	to	view	code	image

from	pprint	import	pprint

pprint(GoodWay.mro())

>>>

[<class	‘__main__.GoodWay’>,

<class	‘__main__.TimesFiveCorrect’>,

<class	‘__main__.PlusTwoCorrect’>,

<class	‘__main__.MyBaseClass’>,



<class	‘object’>]

When	I	call	GoodWay(5),	it	in	turn	calls	TimesFiveCorrect.__init__,	which
calls	PlusTwoCorrect.__init__,	which	calls	MyBaseClass.__init__.	Once
this	reaches	the	top	of	the	diamond,	then	all	of	the	initialization	methods	actually	do	their
work	in	the	opposite	order	from	how	their	__init__	functions	were	called.
MyBaseClass.__init__	assigns	the	value	to	5.	PlusTwoCorrect.__init__
adds	2	to	make	value	equal	7.	TimesFiveCorrect.__init__	multiplies	it	by	5	to
make	value	equal	35.

The	super	built-in	function	works	well,	but	it	still	has	two	noticeable	problems	in	Python
2:

	Its	syntax	is	a	bit	verbose.	You	have	to	specify	the	class	you’re	in,	the	self	object,
the	method	name	(usually	__init__),	and	all	the	arguments.	This	construction	can
be	confusing	to	new	Python	programmers.

	You	have	to	specify	the	current	class	by	name	in	the	call	to	super.	If	you	ever
change	the	class’s	name—a	very	common	activity	when	improving	a	class	hierarchy
—you	also	need	to	update	every	call	to	super.

Thankfully,	Python	3	fixes	these	issues	by	making	calls	to	super	with	no	arguments
equivalent	to	calling	super	with	__class__	and	self	specified.	In	Python	3,	you
should	always	use	super	because	it’s	clear,	concise,	and	always	does	the	right	thing.
Click	here	to	view	code	image

class	Explicit(MyBaseClass):

				def	__init__(self,	value):

								super(__class__,	self).__init__(value	*	2)

class	Implicit(MyBaseClass):

				def	__init__(self,	value):

								super().__init__(value	*	2)

assert	Explicit(10).value	==	Implicit(10).value

This	works	because	Python	3	lets	you	reliably	reference	the	current	class	in	methods	using
the	__class__	variable.	This	doesn’t	work	in	Python	2	because	__class__	isn’t
defined.	You	may	guess	that	you	could	use	self.__class__	as	an	argument	to
super,	but	this	breaks	because	of	the	way	super	is	implemented	in	Python	2.

Things	to	Remember
	Python’s	standard	method	resolution	order	(MRO)	solves	the	problems	of	superclass
initialization	order	and	diamond	inheritance.

	Always	use	the	super	built-in	function	to	initialize	parent	classes.



Item	26:	Use	Multiple	Inheritance	Only	for	Mix-in	Utility
Classes
Python	is	an	object-oriented	language	with	built-in	facilities	for	making	multiple
inheritance	tractable	(see	Item	25:	“Initialize	Parent	Classes	with	super”).	However,	it’s
better	to	avoid	multiple	inheritance	altogether.

If	you	find	yourself	desiring	the	convenience	and	encapsulation	that	comes	with	multiple
inheritance,	consider	writing	a	mix-in	instead.	A	mix-in	is	a	small	class	that	only	defines	a
set	of	additional	methods	that	a	class	should	provide.	Mix-in	classes	don’t	define	their
own	instance	attributes	nor	require	their	__init__	constructor	to	be	called.

Writing	mix-ins	is	easy	because	Python	makes	it	trivial	to	inspect	the	current	state	of	any
object	regardless	of	its	type.	Dynamic	inspection	lets	you	write	generic	functionality	a
single	time,	in	a	mix-in,	that	can	be	applied	to	many	other	classes.	Mix-ins	can	be
composed	and	layered	to	minimize	repetitive	code	and	maximize	reuse.

For	example,	say	you	want	the	ability	to	convert	a	Python	object	from	its	in-memory
representation	to	a	dictionary	that’s	ready	for	serialization.	Why	not	write	this
functionality	generically	so	you	can	use	it	with	all	of	your	classes?

Here,	I	define	an	example	mix-in	that	accomplishes	this	with	a	new	public	method	that’s
added	to	any	class	that	inherits	from	it:
Click	here	to	view	code	image

class	ToDictMixin(object):

				def	to_dict(self):

								return	self._traverse_dict(self.__dict__)

The	implementation	details	are	straightforward	and	rely	on	dynamic	attribute	access	using
hasattr,	dynamic	type	inspection	with	isinstance,	and	accessing	the	instance
dictionary	__dict__.
Click	here	to	view	code	image

def	_traverse_dict(self,	instance_dict):

								output	=	{}

								for	key,	value	in	instance_dict.items():

												output[key]	=	self._traverse(key,	value)

								return	output

				def	_traverse(self,	key,	value):

								if	isinstance(value,	ToDictMixin):

												return	value.to_dict()

								elif	isinstance(value,	dict):

												return	self._traverse_dict(value)

								elif	isinstance(value,	list):

												return	[self._traverse(key,	i)	for	i	in	value]

								elif	hasattr(value,	‘__dict__’):

												return	self._traverse_dict(value.__dict__)

								else:

												return	value

Here,	I	define	an	example	class	that	uses	the	mix-in	to	make	a	dictionary	representation	of
a	binary	tree:



Click	here	to	view	code	image

class	BinaryTree(ToDictMixin):

				def	__init__(self,	value,	left=None,	right=None):

								self.value	=	value

								self.left	=	left

								self.right	=	right

Translating	a	large	number	of	related	Python	objects	into	a	dictionary	becomes	easy.
Click	here	to	view	code	image

tree	=	BinaryTree(10,

				left=BinaryTree(7,	right=BinaryTree(9)),

				right=BinaryTree(13,	left=BinaryTree(11)))

print(tree.to_dict())

>>>

{‘left’:	{‘left’:	None,

										‘right’:	{‘left’:	None,	‘right’:	None,	‘value’:	9},

										‘value’:	7},

‘right’:	{‘left’:	{‘left’:	None,	‘right’:	None,	‘value’:	11},

											‘right’:	None,

											‘value’:	13},

‘value’:	10}

The	best	part	about	mix-ins	is	that	you	can	make	their	generic	functionality	pluggable	so
behaviors	can	be	overridden	when	required.	For	example,	here	I	define	a	subclass	of
BinaryTree	that	holds	a	reference	to	its	parent.	This	circular	reference	would	cause	the
default	implementation	of	ToDictMixin.to_dict	to	loop	forever.
Click	here	to	view	code	image

class	BinaryTreeWithParent(BinaryTree):

				def	__init__(self,	value,	left=None,

																	right=None,	parent=None):

								super().__init__(value,	left=left,	right=right)

								self.parent	=	parent

The	solution	is	to	override	the	ToDictMixin._traverse	method	in	the
BinaryTreeWithParent	class	to	only	process	values	that	matter,	preventing	cycles
encountered	by	the	mix-in.	Here,	I	override	the	_traverse	method	to	not	traverse	the
parent	and	just	insert	its	numerical	value:
Click	here	to	view	code	image

def	_traverse(self,	key,	value):

								if	(isinstance(value,	BinaryTreeWithParent)	and

																key	==	‘parent’):

												return	value.value		#	Prevent	cycles

								else:

												return	super()._traverse(key,	value)

Calling	BinaryTreeWithParent.to_dict	will	work	without	issue	because	the
circular	referencing	properties	aren’t	followed.
Click	here	to	view	code	image

root	=	BinaryTreeWithParent(10)

root.left	=	BinaryTreeWithParent(7,	parent=root)

root.left.right	=	BinaryTreeWithParent(9,	parent=root.left)

print(root.to_dict())



>>>

{‘left’:	{‘left’:	None,

										‘parent’:	10,

										‘right’:	{‘left’:	None,

																				‘parent’:	7,

																				‘right’:	None,

																				‘value’:	9},

										‘value’:	7},

‘parent’:	None,

‘right’:	None,

‘value’:	10}

By	defining	BinaryTreeWithParent._traverse,	I’ve	also	enabled	any	class	that
has	an	attribute	of	type	BinaryTreeWithParent	to	automatically	work	with
ToDictMixin.
Click	here	to	view	code	image

class	NamedSubTree(ToDictMixin):

				def	__init__(self,	name,	tree_with_parent):

								self.name	=	name

								self.tree_with_parent	=	tree_with_parent

my_tree	=	NamedSubTree(‘foobar’,	root.left.right)

print(my_tree.to_dict())		#	No	infinite	loop

>>>

{‘name’:	‘foobar’,

‘tree_with_parent’:	{‘left’:	None,

																					‘parent’:	7,

																					‘right’:	None,

																					‘value’:	9}}

Mix-ins	can	also	be	composed	together.	For	example,	say	you	want	a	mix-in	that	provides
generic	JSON	serialization	for	any	class.	You	can	do	this	by	assuming	that	a	class	provides
a	to_dict	method	(which	may	or	may	not	be	provided	by	the	ToDictMixin	class).
Click	here	to	view	code	image

class	JsonMixin(object):

				@classmethod

				def	from_json(cls,	data):

								kwargs	=	json.loads(data)

								return	cls(**kwargs)

				def	to_json(self):

								return	json.dumps(self.to_dict())

Note	how	the	JsonMixin	class	defines	both	instance	methods	and	class	methods.	Mix-
ins	let	you	add	either	kind	of	behavior.	In	this	example,	the	only	requirements	of	the
JsonMixin	are	that	the	class	has	a	to_dict	method	and	its	__init__	method	takes
keyword	arguments	(see	Item	19:	“Provide	Optional	Behavior	with	Keyword
Arguments”).

This	mix-in	makes	it	simple	to	create	hierarchies	of	utility	classes	that	can	be	serialized	to
and	from	JSON	with	little	boilerplate.	For	example,	here	I	have	a	hierarchy	of	data	classes
representing	parts	of	a	datacenter	topology:



Click	here	to	view	code	image

class	DatacenterRack(ToDictMixin,	JsonMixin):

				def	__init__(self,	switch=None,	machines=None):

								self.switch	=	Switch(**switch)

								self.machines	=	[

												Machine(**kwargs)	for	kwargs	in	machines]

class	Switch(ToDictMixin,	JsonMixin):

				#	…

class	Machine(ToDictMixin,	JsonMixin):

				#	…

Serializing	these	classes	to	and	from	JSON	is	simple.	Here,	I	verify	that	the	data	is	able	to
be	sent	round-trip	through	serializing	and	deserializing:
Click	here	to	view	code	image

serialized	=	”””{

				“switch”:	{“ports”:	5,	“speed”:	1e9},

				“machines”:	[

								{“cores”:	8,	“ram”:	32e9,	“disk”:	5e12},

								{“cores”:	4,	“ram”:	16e9,	“disk”:	1e12},

								{“cores”:	2,	“ram”:	4e9,	“disk”:	500e9}

				]

}”””

deserialized	=	DatacenterRack.from_json(serialized)

roundtrip	=	deserialized.to_json()

assert	json.loads(serialized)	==	json.loads(roundtrip)

When	you	use	mix-ins	like	this,	it’s	also	fine	if	the	class	already	inherits	from
JsonMixin	higher	up	in	the	object	hierarchy.	The	resulting	class	will	behave	the	same
way.

Things	to	Remember
	Avoid	using	multiple	inheritance	if	mix-in	classes	can	achieve	the	same	outcome.

	Use	pluggable	behaviors	at	the	instance	level	to	provide	per-class	customization
when	mix-in	classes	may	require	it.

	Compose	mix-ins	to	create	complex	functionality	from	simple	behaviors.

Item	27:	Prefer	Public	Attributes	Over	Private	Ones
In	Python,	there	are	only	two	types	of	attribute	visibility	for	a	class’s	attributes:	public	and
private.
Click	here	to	view	code	image

class	MyObject(object):

				def	__init__(self):

								self.public_field	=	5

								self.__private_field	=	10

				def	get_private_field(self):

								return	self.__private_field



Public	attributes	can	be	accessed	by	anyone	using	the	dot	operator	on	the	object.
Click	here	to	view	code	image

foo	=	MyObject()

assert	foo.public_field	==	5

Private	fields	are	specified	by	prefixing	an	attribute’s	name	with	a	double	underscore.
They	can	be	accessed	directly	by	methods	of	the	containing	class.
Click	here	to	view	code	image

assert	foo.get_private_field()	==	10

Directly	accessing	private	fields	from	outside	the	class	raises	an	exception.
Click	here	to	view	code	image

foo.__private_field

>>>

AttributeError:	‘MyObject’	object	has	no	attribute	‘__private_field’

Class	methods	also	have	access	to	private	attributes	because	they	are	declared	within	the
surrounding	class	block.
Click	here	to	view	code	image

class	MyOtherObject(object):

				def	__init__(self):

								self.__private_field	=	71

				@classmethod

				def	get_private_field_of_instance(cls,	instance):

								return	instance.__private_field

bar	=	MyOtherObject()

assert	MyOtherObject.get_private_field_of_instance(bar)	==	71

As	you’d	expect	with	private	fields,	a	subclass	can’t	access	its	parent	class’s	private	fields.
Click	here	to	view	code	image

class	MyParentObject(object):

				def	__init__(self):

								self.__private_field	=	71

class	MyChildObject(MyParentObject):

				def	get_private_field(self):

								return	self.__private_field

baz	=	MyChildObject()

baz.get_private_field()

>>>

AttributeError:	‘MyChildObject’	object	has	no	attribute

‘_MyChildObject__private_field’

The	private	attribute	behavior	is	implemented	with	a	simple	transformation	of	the	attribute
name.	When	the	Python	compiler	sees	private	attribute	access	in	methods	like
MyChildObject.get_private_field,	it	translates	__private_field	to
access	_MyChildObject__private_field	instead.	In	this	example,
__private_field	was	only	defined	in	MyParentObject.__init__,	meaning



the	private	attribute’s	real	name	is	_MyParentObject__private_field.
Accessing	the	parent’s	private	attribute	from	the	child	class	fails	simply	because	the
transformed	attribute	name	doesn’t	match.
Knowing	this	scheme,	you	can	easily	access	the	private	attributes	of	any	class,	from	a
subclass	or	externally,	without	asking	for	permission.
Click	here	to	view	code	image

assert	baz._MyParentObject__private_field	==	71

If	you	look	in	the	object’s	attribute	dictionary,	you’ll	see	that	private	attributes	are	actually
stored	with	the	names	as	they	appear	after	the	transformation.
Click	here	to	view	code	image

print(baz.__dict__)

>>>

{‘_MyParentObject__private_field’:	71}

Why	doesn’t	the	syntax	for	private	attributes	actually	enforce	strict	visibility?	The
simplest	answer	is	one	often-quoted	motto	of	Python:	“We	are	all	consenting	adults	here.”
Python	programmers	believe	that	the	benefits	of	being	open	outweigh	the	downsides	of
being	closed.

Beyond	that,	having	the	ability	to	hook	language	features	like	attribute	access	(see	Item
32:	“Use	__getattr__,	__getattribute__,	and	__setattr__	for	Lazy
Attributes”)	enables	you	to	mess	around	with	the	internals	of	objects	whenever	you	wish.
If	you	can	do	that,	what	is	the	value	of	Python	trying	to	prevent	private	attribute	access
otherwise?

To	minimize	the	damage	of	accessing	internals	unknowingly,	Python	programmers	follow
a	naming	convention	defined	in	the	style	guide	(see	Item	2:	“Follow	the	PEP	8	Style
Guide”).	Fields	prefixed	by	a	single	underscore	(like	_protected_field)	are
protected,	meaning	external	users	of	the	class	should	proceed	with	caution.

However,	many	programmers	who	are	new	to	Python	use	private	fields	to	indicate	an
internal	API	that	shouldn’t	be	accessed	by	subclasses	or	externally.
Click	here	to	view	code	image

class	MyClass(object):

				def	__init__(self,	value):

								self.__value	=	value

				def	get_value(self):

								return	str(self.__value)

foo	=	MyClass(5)

assert	foo.get_value()	==	‘5’

This	is	the	wrong	approach.	Inevitably	someone,	including	you,	will	want	to	subclass	your
class	to	add	new	behavior	or	to	work	around	deficiencies	in	existing	methods	(like	above,
how	MyClass.get_value	always	returns	a	string).	By	choosing	private	attributes,
you’re	only	making	subclass	overrides	and	extensions	cumbersome	and	brittle.	Your
potential	subclassers	will	still	access	the	private	fields	when	they	absolutely	need	to	do	so.



Click	here	to	view	code	image

class	MyIntegerSubclass(MyClass):

				def	get_value(self):

								return	int(self._MyClass__value)

foo	=	MyIntegerSubclass(5)

assert	foo.get_value()	==	5

But	if	the	class	hierarchy	changes	beneath	you,	these	classes	will	break	because	the	private
references	are	no	longer	valid.	Here,	the	MyIntegerSubclass	class’s	immediate
parent,	MyClass,	has	had	another	parent	class	added	called	MyBaseClass:
Click	here	to	view	code	image

class	MyBaseClass(object):

				def	__init__(self,	value):

								self.__value	=	value

				#	…

class	MyClass(MyBaseClass):

				#	…

class	MyIntegerSubclass(MyClass):

				def	get_value(self):

								return	int(self._MyClass__value)

The	__value	attribute	is	now	assigned	in	the	MyBaseClass	parent	class,	not	the
MyClass	parent.	That	causes	the	private	variable	reference	self._MyClass__value
to	break	in	MyIntegerSubclass.
Click	here	to	view	code	image

foo	=	MyIntegerSubclass(5)

foo.get_value()

>>>

AttributeError:	‘MyIntegerSubclass’	object	has	no	attribute	‘_MyClass__value’

In	general,	it’s	better	to	err	on	the	side	of	allowing	subclasses	to	do	more	by	using
protected	attributes.	Document	each	protected	field	and	explain	which	are	internal	APIs
available	to	subclasses	and	which	should	be	left	alone	entirely.	This	is	as	much	advice	to
other	programmers	as	it	is	guidance	for	your	future	self	on	how	to	extend	your	own	code
safely.
Click	here	to	view	code	image

class	MyClass(object):

				def	__init__(self,	value):

								#	This	stores	the	user-supplied	value	for	the	object.

								#	It	should	be	coercible	to	a	string.	Once	assigned	for

								#	the	object	it	should	be	treated	as	immutable.

								self._value	=	value

The	only	time	to	seriously	consider	using	private	attributes	is	when	you’re	worried	about
naming	conflicts	with	subclasses.	This	problem	occurs	when	a	child	class	unwittingly
defines	an	attribute	that	was	already	defined	by	its	parent	class.
Click	here	to	view	code	image

class	ApiClass(object):



				def	__init__(self):

								self._value	=	5

			def	get(self):

							return	self._value

class	Child(ApiClass):

				def	__init__(self):

								super().__init__()

								self._value	=	‘hello’		#	Conflicts

a	=	Child()

print(a.get(),	‘and’,	a._value,	‘should	be	different’)

>>>

hello	and	hello	should	be	different

This	is	primarily	a	concern	with	classes	that	are	part	of	a	public	API;	the	subclasses	are
out	of	your	control,	so	you	can’t	refactor	to	fix	the	problem.	Such	a	conflict	is	especially
possible	with	attribute	names	that	are	very	common	(like	value).	To	reduce	the	risk	of
this	happening,	you	can	use	a	private	attribute	in	the	parent	class	to	ensure	that	there	are
no	attribute	names	that	overlap	with	child	classes.
Click	here	to	view	code	image

class	ApiClass(object):

				def	__init__(self):

								self.__value	=	5

				def	get(self):

								return	self.__value

class	Child(ApiClass):

				def	__init__(self):

								super().__init__()

								self._value	=	‘hello’		#	OK!

a	=	Child()

print(a.get(),	‘and’,	a._value,	‘are	different’)

>>>

5	and	hello	are	different

Things	to	Remember
	Private	attributes	aren’t	rigorously	enforced	by	the	Python	compiler.

	Plan	from	the	beginning	to	allow	subclasses	to	do	more	with	your	internal	APIs	and
attributes	instead	of	locking	them	out	by	default.

	Use	documentation	of	protected	fields	to	guide	subclasses	instead	of	trying	to	force
access	control	with	private	attributes.

	Only	consider	using	private	attributes	to	avoid	naming	conflicts	with	subclasses	that
are	out	of	your	control.



Item	28:	Inherit	from	collections.abc	for	Custom
Container	Types
Much	of	programming	in	Python	is	defining	classes	that	contain	data	and	describing	how
such	objects	relate	to	each	other.	Every	Python	class	is	a	container	of	some	kind,
encapsulating	attributes	and	functionality	together.	Python	also	provides	built-in	container
types	for	managing	data:	lists,	tuples,	sets,	and	dictionaries.

When	you’re	designing	classes	for	simple	use	cases	like	sequences,	it’s	natural	that	you’d
want	to	subclass	Python’s	built-in	list	type	directly.	For	example,	say	you	want	to	create
your	own	custom	list	type	that	has	additional	methods	for	counting	the	frequency	of	its
members.
Click	here	to	view	code	image

class	FrequencyList(list):

				def	__init__(self,	members):

								super().__init__(members)

				def	frequency(self):

								counts	=	{}

								for	item	in	self:

												counts.setdefault(item,	0)

												counts[item]	+=	1

								return	counts

By	subclassing	list,	you	get	all	of	list’s	standard	functionality	and	preserve	the
semantics	familiar	to	all	Python	programmers.	Your	additional	methods	can	add	any
custom	behaviors	you	need.
Click	here	to	view	code	image

foo	=	FrequencyList([‘a’,	‘b’,	‘a’,	‘c’,	‘b’,	‘a’,	‘d’])

print(‘Length	is’,	len(foo))

foo.pop()

print(‘After	pop:’,	repr(foo))

print(‘Frequency:’,	foo.frequency())

>>>

Length	is	7

After	pop:	[‘a’,	‘b’,	‘a’,	‘c’,	‘b’,	‘a’]

Frequency:	{‘a’:	3,	‘c’:	1,	‘b’:	2}

Now,	imagine	you	want	to	provide	an	object	that	feels	like	a	list,	allowing	indexing,	but
isn’t	a	list	subclass.	For	example,	say	you	want	to	provide	sequence	semantics	(like
list	or	tuple)	for	a	binary	tree	class.
Click	here	to	view	code	image

class	BinaryNode(object):

				def	__init__(self,	value,	left=None,	right=None):

								self.value	=	value

								self.left	=	left

								self.right	=	right

How	do	you	make	this	act	like	a	sequence	type?	Python	implements	its	container
behaviors	with	instance	methods	that	have	special	names.	When	you	access	a	sequence
item	by	index:



bar	=	[1,	2,	3]

bar[0]

it	will	be	interpreted	as:
bar.__getitem__(0)

To	make	the	BinaryNode	class	act	like	a	sequence,	you	can	provide	a	custom
implementation	of	__getitem__	that	traverses	the	object	tree	depth	first.
Click	here	to	view	code	image

class	IndexableNode(BinaryNode):

				def	_search(self,	count,	index):

								#	…

								#	Returns	(found,	count)

				def	__getitem__(self,	index):

								found,	_	=	self._search(0,	index)

								if	not	found:

												raise	IndexError(‘Index	out	of	range’)

								return	found.value

You	can	construct	your	binary	tree	as	usual.
Click	here	to	view	code	image

tree	=	IndexableNode(

				10,

				left=IndexableNode(

								5,

								left=IndexableNode(2),

								right=IndexableNode(

												6,	right=IndexableNode(7))),

				right=IndexableNode(

								15,	left=IndexableNode(11)))

But	you	can	also	access	it	like	a	list	in	addition	to	tree	traversal.
Click	here	to	view	code	image

print(‘LRR	=’,	tree.left.right.right.value)

print(‘Index	0	=’,	tree[0])

print(‘Index	1	=’,	tree[1])

print(‘11	in	the	tree?’,	11	in	tree)

print(‘17	in	the	tree?’,	17	in	tree)

print(‘Tree	is’,	list(tree))

>>>

LRR	=	7

Index	0	=	2

Index	1	=	5

11	in	the	tree?	True

17	in	the	tree?	False

Tree	is	[2,	5,	6,	7,	10,	11,	15]

The	problem	is	that	implementing	__getitem__	isn’t	enough	to	provide	all	of	the
sequence	semantics	you’d	expect.
Click	here	to	view	code	image

len(tree)

>>>



TypeError:	object	of	type	‘IndexableNode’	has	no	len()

The	len	built-in	function	requires	another	special	method	named	__len__	that	must
have	an	implementation	for	your	custom	sequence	type.
Click	here	to	view	code	image

class	SequenceNode(IndexableNode):

				def	__len__(self):

								_,	count	=	self._search(0,	None)

								return	count

tree	=	SequenceNode(

				#	…

)

print(‘Tree	has	%d	nodes’	%	len(tree))

>>>

Tree	has	7	nodes

Unfortunately,	this	still	isn’t	enough.	Also	missing	are	the	count	and	index	methods
that	a	Python	programmer	would	expect	to	see	on	a	sequence	like	list	or	tuple.
Defining	your	own	container	types	is	much	harder	than	it	looks.

To	avoid	this	difficulty	throughout	the	Python	universe,	the	built-in	collections.abc
module	defines	a	set	of	abstract	base	classes	that	provide	all	of	the	typical	methods	for
each	container	type.	When	you	subclass	from	these	abstract	base	classes	and	forget	to
implement	required	methods,	the	module	will	tell	you	something	is	wrong.
Click	here	to	view	code	image

from	collections.abc	import	Sequence

class	BadType(Sequence):

				pass

foo	=	BadType()

>>>

TypeError:	Can’t	instantiate	abstract	class	BadType	with	abstract	methods

__getitem__,	__len__

When	you	do	implement	all	of	the	methods	required	by	an	abstract	base	class,	as	I	did
above	with	SequenceNode,	it	will	provide	all	of	the	additional	methods	like	index
and	count	for	free.
Click	here	to	view	code	image

class	BetterNode(SequenceNode,	Sequence):

				pass

tree	=	BetterNode(

				#	…

)

print(‘Index	of	7	is’,	tree.index(7))

print(‘Count	of	10	is’,	tree.count(10))

>>>



Index	of	7	is	3

Count	of	10	is	1

The	benefit	of	using	these	abstract	base	classes	is	even	greater	for	more	complex	types
like	Set	and	MutableMapping,	which	have	a	large	number	of	special	methods	that
need	to	be	implemented	to	match	Python	conventions.

Things	to	Remember
	Inherit	directly	from	Python’s	container	types	(like	list	or	dict)	for	simple	use
cases.

	Beware	of	the	large	number	of	methods	required	to	implement	custom	container
types	correctly.

	Have	your	custom	container	types	inherit	from	the	interfaces	defined	in
collections.abc	to	ensure	that	your	classes	match	required	interfaces	and
behaviors.



4.	Metaclasses	and	Attributes

Metaclasses	are	often	mentioned	in	lists	of	Python’s	features,	but	few	understand	what
they	accomplish	in	practice.	The	name	metaclass	vaguely	implies	a	concept	above	and
beyond	a	class.	Simply	put,	metaclasses	let	you	intercept	Python’s	class	statement	and
provide	special	behavior	each	time	a	class	is	defined.

Similarly	mysterious	and	powerful	are	Python’s	built-in	features	for	dynamically
customizing	attribute	accesses.	Along	with	Python’s	object-oriented	constructs,	these
facilities	provide	wonderful	tools	to	ease	the	transition	from	simple	classes	to	complex
ones.

However,	with	these	powers	come	many	pitfalls.	Dynamic	attributes	enable	you	to
override	objects	and	cause	unexpected	side	effects.	Metaclasses	can	create	extremely
bizarre	behaviors	that	are	unapproachable	to	newcomers.	It’s	important	that	you	follow	the
rule	of	least	surprise	and	only	use	these	mechanisms	to	implement	well-understood
idioms.

Item	29:	Use	Plain	Attributes	Instead	of	Get	and	Set
Methods
Programmers	coming	to	Python	from	other	languages	may	naturally	try	to	implement
explicit	getter	and	setter	methods	in	their	classes.

class	OldResistor(object):

				def	__init__(self,	ohms):

								self._ohms	=	ohms

				def	get_ohms(self):

								return	self._ohms

				def	set_ohms(self,	ohms):

								self._ohms	=	ohms

Using	these	setters	and	getters	is	simple,	but	it’s	not	Pythonic.
Click	here	to	view	code	image

r0	=	OldResistor(50e3)

print(‘Before:	%5r’	%	r0.get_ohms())

r0.set_ohms(10e3)

print(‘After:		%5r’	%	r0.get_ohms())

>>>

Before:	50000.0

After:		10000.0

Such	methods	are	especially	clumsy	for	operations	like	incrementing	in	place.
Click	here	to	view	code	image

r0.set_ohms(r0.get_ohms()	+	5e3)

These	utility	methods	do	help	define	the	interface	for	your	class,	making	it	easier	to
encapsulate	functionality,	validate	usage,	and	define	boundaries.	Those	are	important



goals	when	designing	a	class	to	ensure	you	don’t	break	callers	as	your	class	evolves	over
time.

In	Python,	however,	you	almost	never	need	to	implement	explicit	setter	or	getter	methods.
Instead,	you	should	always	start	your	implementations	with	simple	public	attributes.
Click	here	to	view	code	image

class	Resistor(object):

				def	__init__(self,	ohms):

								self.ohms	=	ohms

								self.voltage	=	0

								self.current	=	0

r1	=	Resistor(50e3)

r1.ohms	=	10e3

These	make	operations	like	incrementing	in	place	natural	and	clear.
r1.ohms	+=	5e3

Later,	if	you	decide	you	need	special	behavior	when	an	attribute	is	set,	you	can	migrate	to
the	@property	decorator	and	its	corresponding	setter	attribute.	Here,	I	define	a	new
subclass	of	Resistor	that	lets	me	vary	the	current	by	assigning	the	voltage
property.	Note	that	in	order	to	work	properly	the	name	of	both	the	setter	and	getter
methods	must	match	the	intended	property	name.
Click	here	to	view	code	image

class	VoltageResistance(Resistor):

				def	__init__(self,	ohms):

								super().__init__(ohms)

								self._voltage	=	0

				@property

				def	voltage(self):

								return	self._voltage

				@voltage.setter

				def	voltage(self,	voltage):

								self._voltage	=	voltage

								self.current	=	self._voltage	/	self.ohms

Now,	assigning	the	voltage	property	will	run	the	voltage	setter	method,	updating	the
current	property	of	the	object	to	match.
Click	here	to	view	code	image

r2	=	VoltageResistance(1e3)

print(‘Before:	%5r	amps’	%	r2.current)

r2.voltage	=	10

print(‘After:		%5r	amps’	%	r2.current)

>>>

Before:					0	amps

After:			0.01	amps

Specifying	a	setter	on	a	property	also	lets	you	perform	type	checking	and	validation	on
values	passed	to	your	class.	Here,	I	define	a	class	that	ensures	all	resistance	values	are
above	zero	ohms:
Click	here	to	view	code	image



class	BoundedResistance(Resistor):

				def	__init__(self,	ohms):

								super().__init__(ohms)

				@property

				def	ohms(self):

								return	self._ohms

				@ohms.setter

				def	ohms(self,	ohms):

								if	ohms	<=	0:

												raise	ValueError(‘%f	ohms	must	be	>	0’	%	ohms)

								self._ohms	=	ohms

Assigning	an	invalid	resistance	to	the	attribute	raises	an	exception.
Click	here	to	view	code	image

r3	=	BoundedResistance(1e3)

r3.ohms	=	0

>>>

ValueError:	0.000000	ohms	must	be	>	0

An	exception	will	also	be	raised	if	you	pass	an	invalid	value	to	the	constructor.
Click	here	to	view	code	image

BoundedResistance(-5)

>>>

ValueError:	-5.000000	ohms	must	be	>	0

This	happens	because	BoundedResistance.__init__	calls
Resistor.__init__,	which	assigns	self.ohms	=	-5.	That	assignment	causes	the
@ohms.setter	method	from	BoundedResistance	to	be	called,	immediately
running	the	validation	code	before	object	construction	has	completed.

You	can	even	use	@property	to	make	attributes	from	parent	classes	immutable.
Click	here	to	view	code	image

class	FixedResistance(Resistor):

				#	…

				@property

				def	ohms(self):

								return	self._ohms

				@ohms.setter

				def	ohms(self,	ohms):

								if	hasattr(self,	‘_ohms’):

												raise	AttributeError(“Can’t	set	attribute”)

								self._ohms	=	ohms

Trying	to	assign	to	the	property	after	construction	raises	an	exception.
Click	here	to	view	code	image

r4	=	FixedResistance(1e3)

r4.ohms	=	2e3

>>>

AttributeError:	Can’t	set	attribute



The	biggest	shortcoming	of	@property	is	that	the	methods	for	an	attribute	can	only	be
shared	by	subclasses.	Unrelated	classes	can’t	share	the	same	implementation.	However,
Python	also	supports	descriptors	(see	Item	31:	“Use	Descriptors	for	Reusable
@property	Methods”)	that	enable	reusable	property	logic	and	many	other	use	cases.

Finally,	when	you	use	@property	methods	to	implement	setters	and	getters,	be	sure	that
the	behavior	you	implement	is	not	surprising.	For	example,	don’t	set	other	attributes	in
getter	property	methods.
Click	here	to	view	code	image

class	MysteriousResistor(Resistor):

				@property

				def	ohms(self):

								self.voltage	=	self._ohms	*	self.current

								return	self._ohms

				#	…

This	leads	to	extremely	bizarre	behavior.
Click	here	to	view	code	image

r7	=	MysteriousResistor(10)

r7.current	=	0.01

print(‘Before:	%5r’	%	r7.voltage)

r7.ohms

print(‘After:		%5r’	%	r7.voltage)

>>>

Before:					0

After:				0.1

The	best	policy	is	to	only	modify	related	object	state	in	@property.setter	methods.
Be	sure	to	avoid	any	other	side	effects	the	caller	may	not	expect	beyond	the	object,	such	as
importing	modules	dynamically,	running	slow	helper	functions,	or	making	expensive
database	queries.	Users	of	your	class	will	expect	its	attributes	to	be	like	any	other	Python
object:	quick	and	easy.	Use	normal	methods	to	do	anything	more	complex	or	slow.

Things	to	Remember
	Define	new	class	interfaces	using	simple	public	attributes,	and	avoid	set	and	get
methods.

	Use	@property	to	define	special	behavior	when	attributes	are	accessed	on	your
objects,	if	necessary.

	Follow	the	rule	of	least	surprise	and	avoid	weird	side	effects	in	your	@property
methods.

	Ensure	that	@property	methods	are	fast;	do	slow	or	complex	work	using	normal
methods.



Item	30:	Consider	@property	Instead	of	Refactoring
Attributes
The	built-in	@property	decorator	makes	it	easy	for	simple	accesses	of	an	instance’s
attributes	to	act	smarter	(see	Item	29:	“Use	Plain	Attributes	Instead	of	Get	and	Set
Methods”).	One	advanced	but	common	use	of	@property	is	transitioning	what	was
once	a	simple	numerical	attribute	into	an	on-the-fly	calculation.	This	is	extremely	helpful
because	it	lets	you	migrate	all	existing	usage	of	a	class	to	have	new	behaviors	without
rewriting	any	of	the	call	sites.	It	also	provides	an	important	stopgap	for	improving	your
interfaces	over	time.

For	example,	say	you	want	to	implement	a	leaky	bucket	quota	using	plain	Python	objects.
Here,	the	Bucket	class	represents	how	much	quota	remains	and	the	duration	for	which
the	quota	will	be	available:
Click	here	to	view	code	image

class	Bucket(object):

				def	__init__(self,	period):

								self.period_delta	=	timedelta(seconds=period)

								self.reset_time	=	datetime.now()

								self.quota	=	0

				def	__repr__(self):

								return	‘Bucket(quota=%d)’	%	self.quota

The	leaky	bucket	algorithm	works	by	ensuring	that,	whenever	the	bucket	is	filled,	the
amount	of	quota	does	not	carry	over	from	one	period	to	the	next.
Click	here	to	view	code	image

def	fill(bucket,	amount):

				now	=	datetime.now()

				if	now	-	bucket.reset_time	>	bucket.period_delta:

								bucket.quota	=	0

								bucket.reset_time	=	now

				bucket.quota	+=	amount

Each	time	a	quota	consumer	wants	to	do	something,	it	first	must	ensure	that	it	can	deduct
the	amount	of	quota	it	needs	to	use.
Click	here	to	view	code	image

def	deduct(bucket,	amount):

				now	=	datetime.now()

				if	now	-	bucket.reset_time	>	bucket.period_delta:

								return	False

				if	bucket.quota	-	amount	<	0:

								return	False

				bucket.quota	-=	amount

				return	True

To	use	this	class,	first	I	fill	the	bucket.
bucket	=	Bucket(60)

fill(bucket,	100)

print(bucket)

>>>



Bucket(quota=100)

Then,	I	deduct	the	quota	that	I	need.
Click	here	to	view	code	image

if	deduct(bucket,	99):

				print(‘Had	99	quota’)

else:

				print(‘Not	enough	for	99	quota’)

print(bucket)

>>>

Had	99	quota

Bucket(quota=1)

Eventually,	I’m	prevented	from	making	progress	because	I	try	to	deduct	more	quota	than
is	available.	In	this	case,	the	bucket’s	quota	level	remains	unchanged.
Click	here	to	view	code	image

if	deduct(bucket,	3):

				print(‘Had	3	quota’)

else:

				print(‘Not	enough	for	3	quota’)

print(bucket)

>>>

Not	enough	for	3	quota

Bucket(quota=1)

The	problem	with	this	implementation	is	that	I	never	know	what	quota	level	the	bucket
started	with.	The	quota	is	deducted	over	the	course	of	the	period	until	it	reaches	zero.	At
that	point,	deduct	will	always	return	False.	When	that	happens,	it	would	be	useful	to
know	whether	callers	to	deduct	are	being	blocked	because	the	Bucket	ran	out	of	quota
or	because	the	Bucket	never	had	quota	in	the	first	place.

To	fix	this,	I	can	change	the	class	to	keep	track	of	the	max_quota	issued	in	the	period
and	the	quota_consumed	in	the	period.
Click	here	to	view	code	image

class	Bucket(object):

				def	__init__(self,	period):

								self.period_delta	=	timedelta(seconds=period)

								self.reset_time	=	datetime.now()

								self.max_quota	=	0

								self.quota_consumed	=	0

				def	__repr__(self):

								return	(‘Bucket(max_quota=%d,	quota_consumed=%d)’	%

																(self.max_quota,	self.quota_consumed))

I	use	a	@property	method	to	compute	the	current	level	of	quota	on-the-fly	using	these
new	attributes.
Click	here	to	view	code	image

@property

				def	quota(self):

								return	self.max_quota	-	self.quota_consumed



When	the	quota	attribute	is	assigned,	I	take	special	action	matching	the	current	interface
of	the	class	used	by	fill	and	deduct.
Click	here	to	view	code	image

@quota.setter

				def	quota(self,	amount):

								delta	=	self.max_quota	-	amount

								if	amount	==	0:

												#	Quota	being	reset	for	a	new	period

												self.quota_consumed	=	0

												self.max_quota	=	0

								elif	delta	<	0:

												#	Quota	being	filled	for	the	new	period

												assert	self.quota_consumed	==	0

												self.max_quota	=	amount

								else:

												#	Quota	being	consumed	during	the	period

												assert	self.max_quota	>=	self.quota_consumed

												self.quota_consumed	+=	delta

Rerunning	the	demo	code	from	above	produces	the	same	results.
Click	here	to	view	code	image

bucket	=	Bucket(60)

print(‘Initial’,	bucket)

fill(bucket,	100)

print(‘Filled’,	bucket)

if	deduct(bucket,	99):

				print(‘Had	99	quota’)

else:

				print(‘Not	enough	for	99	quota’)

print(‘Now’,	bucket)

if	deduct(bucket,	3):

				print(‘Had	3	quota’)

else:

				print(‘Not	enough	for	3	quota’)

print(‘Still’,	bucket)

>>>

Initial	Bucket(max_quota=0,	quota_consumed=0)

Filled	Bucket(max_quota=100,	quota_consumed=0)

Had	99	quota

Now	Bucket(max_quota=100,	quota_consumed=99)

Not	enough	for	3	quota

Still	Bucket(max_quota=100,	quota_consumed=99)

The	best	part	is	that	the	code	using	Bucket.quota	doesn’t	have	to	change	or	know	that
the	class	has	changed.	New	usage	of	Bucket	can	do	the	right	thing	and	access
max_quota	and	quota_consumed	directly.

I	especially	like	@property	because	it	lets	you	make	incremental	progress	toward	a
better	data	model	over	time.	Reading	the	Bucket	example	above,	you	may	have	thought
to	yourself,	“fill	and	deduct	should	have	been	implemented	as	instance	methods	in



the	first	place.”	Although	you’re	probably	right	(see	Item	22:	“Prefer	Helper	Classes	Over
Bookkeeping	with	Dictionaries	and	Tuples”),	in	practice	there	are	many	situations	in
which	objects	start	with	poorly	defined	interfaces	or	act	as	dumb	data	containers.	This
happens	when	code	grows	over	time,	scope	increases,	multiple	authors	contribute	without
anyone	considering	long-term	hygiene,	etc.

@property	is	a	tool	to	help	you	address	problems	you’ll	come	across	in	real-world
code.	Don’t	overuse	it.	When	you	find	yourself	repeatedly	extending	@property
methods,	it’s	probably	time	to	refactor	your	class	instead	of	further	paving	over	your
code’s	poor	design.

Things	to	Remember
	Use	@property	to	give	existing	instance	attributes	new	functionality.

	Make	incremental	progress	toward	better	data	models	by	using	@property.

	Consider	refactoring	a	class	and	all	call	sites	when	you	find	yourself	using
@property	too	heavily.

Item	31:	Use	Descriptors	for	Reusable	@property	Methods
The	big	problem	with	the	@property	built-in	(see	Item	29:	“Use	Plain	Attributes
Instead	of	Get	and	Set	Methods”	and	Item	30:	“Consider	@property	Instead	of
Refactoring	Attributes”)	is	reuse.	The	methods	it	decorates	can’t	be	reused	for	multiple
attributes	of	the	same	class.	They	also	can’t	be	reused	by	unrelated	classes.

For	example,	say	you	want	a	class	to	validate	that	the	grade	received	by	a	student	on	a
homework	assignment	is	a	percentage.
Click	here	to	view	code	image

class	Homework(object):

				def	__init__(self):

								self._grade	=	0

				@property

				def	grade(self):

								return	self._grade

				@grade.setter

				def	grade(self,	value):

								if	not	(0	<=	value	<=	100):

												raise	ValueError(‘Grade	must	be	between	0	and	100’)

								self._grade	=	value

Using	an	@property	makes	this	class	easy	to	use.
galileo	=	Homework()

galileo.grade	=	95

Say	you	also	want	to	give	the	student	a	grade	for	an	exam,	where	the	exam	has	multiple
subjects,	each	with	a	separate	grade.
Click	here	to	view	code	image

class	Exam(object):



				def	__init__(self):

								self._writing_grade	=	0

								self._math_grade	=	0

				@staticmethod

				def	_check_grade(value):

								if	not	(0	<=	value	<=	100):

												raise	ValueError(‘Grade	must	be	between	0	and	100’)

This	quickly	gets	tedious.	Each	section	of	the	exam	requires	adding	a	new	@property
and	related	validation.
Click	here	to	view	code	image

@property

				def	writing_grade(self):

								return	self._writing_grade

				@writing_grade.setter

				def	writing_grade(self,	value):

								self._check_grade(value)

								self._writing_grade	=	value

				@property

				def	math_grade(self):

								return	self._math_grade

				@math_grade.setter

				def	math_grade(self,	value):

								self._check_grade(value)

								self._math_grade	=	value

Also,	this	approach	is	not	general.	If	you	want	to	reuse	this	percentage	validation	beyond
homework	and	exams,	you’d	need	to	write	the	@property	boilerplate	and
_check_grade	repeatedly.

The	better	way	to	do	this	in	Python	is	to	use	a	descriptor.	The	descriptor	protocol	defines
how	attribute	access	is	interpreted	by	the	language.	A	descriptor	class	can	provide
__get__	and	__set__	methods	that	let	you	reuse	the	grade	validation	behavior	without
any	boilerplate.	For	this	purpose,	descriptors	are	also	better	than	mix-ins	(see	Item	26:
“Use	Multiple	Inheritance	Only	for	Mix-in	Utility	Classes”)	because	they	let	you	reuse	the
same	logic	for	many	different	attributes	in	a	single	class.

Here,	I	define	a	new	class	called	Exam	with	class	attributes	that	are	Grade	instances.	The
Grade	class	implements	the	descriptor	protocol.	Before	I	explain	how	the	Grade	class
works,	it’s	important	to	understand	what	Python	will	do	when	your	code	accesses	such
descriptor	attributes	on	an	Exam	instance.
Click	here	to	view	code	image

class	Grade(object):

				def	__get__(*args,	**kwargs):

								#	…

				def	__set__(*args,	**kwargs):

								#	…

class	Exam(object):



				#	Class	attributes

				math_grade	=	Grade()

				writing_grade	=	Grade()

				science_grade	=	Grade()

When	you	assign	a	property:
exam	=	Exam()

exam.writing_grade	=	40

it	will	be	interpreted	as:
Click	here	to	view	code	image

Exam.__dict__[‘writing_grade’].__set__(exam,	40)

When	you	retrieve	a	property:
print(exam.writing_grade)

it	will	be	interpreted	as:
Click	here	to	view	code	image

print(Exam.__dict__[‘writing_grade’].__get__(exam,	Exam))

What	drives	this	behavior	is	the	__getattribute__	method	of	object	(see	Item	32:
“Use	__getattr__,	__getattribute__,	and	__setattr__	for	Lazy
Attributes”).	In	short,	when	an	Exam	instance	doesn’t	have	an	attribute	named
writing_grade,	Python	will	fall	back	to	the	Exam	class’s	attribute	instead.	If	this
class	attribute	is	an	object	that	has	__get__	and	__set__	methods,	Python	will	assume
you	want	to	follow	the	descriptor	protocol.

Knowing	this	behavior	and	how	I	used	@property	for	grade	validation	in	the
Homework	class,	here’s	a	reasonable	first	attempt	at	implementing	the	Grade	descriptor.
Click	here	to	view	code	image

class	Grade(object):

				def	__init__(self):

								self._value	=	0

				def	__get__(self,	instance,	instance_type):

								return	self._value

				def	__set__(self,	instance,	value):

								if	not	(0	<=	value	<=	100):

												raise	ValueError(‘Grade	must	be	between	0	and	100’)

								self._value	=	value

Unfortunately,	this	is	wrong	and	will	result	in	broken	behavior.	Accessing	multiple
attributes	on	a	single	Exam	instance	works	as	expected.
Click	here	to	view	code	image

first_exam	=	Exam()

first_exam.writing_grade	=	82

first_exam.science_grade	=	99

print(‘Writing’,	first_exam.writing_grade)

print(‘Science’,	first_exam.science_grade)

>>>

Writing	82



Science	99

But	accessing	these	attributes	on	multiple	Exam	instances	will	have	unexpected	behavior.
Click	here	to	view	code	image

second_exam	=	Exam()

second_exam.writing_grade	=	75

print(‘Second’,	second_exam.writing_grade,	‘is	right’)

print(‘First	‘,	first_exam.writing_grade,	‘is	wrong’)

>>>

Second	75	is	right

First		75	is	wrong

The	problem	is	that	a	single	Grade	instance	is	shared	across	all	Exam	instances	for	the
class	attribute	writing_grade.	The	Grade	instance	for	this	attribute	is	constructed
once	in	the	program	lifetime	when	the	Exam	class	is	first	defined,	not	each	time	an	Exam
instance	is	created.

To	solve	this,	I	need	the	Grade	class	to	keep	track	of	its	value	for	each	unique	Exam
instance.	I	can	do	this	by	saving	the	per-instance	state	in	a	dictionary.
Click	here	to	view	code	image

class	Grade(object):

				def	__init__(self):

								self._values	=	{}

				def	__get__(self,	instance,	instance_type):

								if	instance	is	None:	return	self

								return	self._values.get(instance,	0)

				def	__set__(self,	instance,	value):

								if	not	(0	<=	value	<=	100):

												raise	ValueError(‘Grade	must	be	between	0	and	100’)

								self._values[instance]	=	value

This	implementation	is	simple	and	works	well,	but	there’s	still	one	gotcha:	It	leaks
memory.	The	_values	dictionary	will	hold	a	reference	to	every	instance	of	Exam	ever
passed	to	__set__	over	the	lifetime	of	the	program.	This	causes	instances	to	never	have
their	reference	count	go	to	zero,	preventing	cleanup	by	the	garbage	collector.

To	fix	this,	I	can	use	Python’s	weakref	built-in	module.	This	module	provides	a	special
class	called	WeakKeyDictionary	that	can	take	the	place	of	the	simple	dictionary	used
for	_values.	The	unique	behavior	of	WeakKeyDictionary	is	that	it	will	remove
Exam	instances	from	its	set	of	keys	when	the	runtime	knows	it’s	holding	the	instance’s
last	remaining	reference	in	the	program.	Python	will	do	the	bookkeeping	for	you	and
ensure	that	the	_values	dictionary	will	be	empty	when	all	Exam	instances	are	no	longer
in	use.
Click	here	to	view	code	image

class	Grade(object):

				def	__init__(self):

								self._values	=	WeakKeyDictionary()

				#	…

Using	this	implementation	of	the	Grade	descriptor,	everything	works	as	expected.



Click	here	to	view	code	image

class	Exam(object):

				math_grade	=	Grade()

				writing_grade	=	Grade()

				science_grade	=	Grade()

first_exam	=	Exam()

first_exam.writing_grade	=	82

second_exam	=	Exam()

second_exam.writing_grade	=	75

print(‘First	‘,	first_exam.writing_grade,	‘is	right’)

print(‘Second’,	second_exam.writing_grade,	‘is	right’)

>>>

First		82	is	right

Second	75	is	right

Things	to	Remember
	Reuse	the	behavior	and	validation	of	@property	methods	by	defining	your	own
descriptor	classes.

	Use	WeakKeyDictionary	to	ensure	that	your	descriptor	classes	don’t	cause
memory	leaks.

	Don’t	get	bogged	down	trying	to	understand	exactly	how	__getattribute__
uses	the	descriptor	protocol	for	getting	and	setting	attributes.

Item	32:	Use	__getattr__,	__getattribute__,	and
__setattr__	for	Lazy	Attributes
Python’s	language	hooks	make	it	easy	to	write	generic	code	for	gluing	systems	together.
For	example,	say	you	want	to	represent	the	rows	of	your	database	as	Python	objects.	Your
database	has	its	schema	set.	Your	code	that	uses	objects	corresponding	to	those	rows	must
also	know	what	your	database	looks	like.	However,	in	Python,	the	code	that	connects	your
Python	objects	to	the	database	doesn’t	need	to	know	the	schema	of	your	rows;	it	can	be
generic.

How	is	that	possible?	Plain	instance	attributes,	@property	methods,	and	descriptors
can’t	do	this	because	they	all	need	to	be	defined	in	advance.	Python	makes	this	dynamic
behavior	possible	with	the	__getattr__	special	method.	If	your	class	defines
__getattr__,	that	method	is	called	every	time	an	attribute	can’t	be	found	in	an	object’s
instance	dictionary.
Click	here	to	view	code	image

class	LazyDB(object):

				def	__init__(self):

								self.exists	=	5

				def	__getattr__(self,	name):

								value	=	‘Value	for	%s’	%	name

								setattr(self,	name,	value)

								return	value



Here,	I	access	the	missing	property	foo.	This	causes	Python	to	call	the	__getattr__
method	above,	which	mutates	the	instance	dictionary	__dict__:
Click	here	to	view	code	image

data	=	LazyDB()

print(‘Before:’,	data.__dict__)

print(‘foo:			’,	data.foo)

print(‘After:	‘,	data.__dict__)

>>>

Before:	{‘exists’:	5}

foo:				Value	for	foo

After:		{‘exists’:	5,	‘foo’:	‘Value	for	foo’}

Here,	I	add	logging	to	LazyDB	to	show	when	__getattr__	is	actually	called.	Note
that	I	use	super().__getattr__()	to	get	the	real	property	value	in	order	to	avoid
infinite	recursion.
Click	here	to	view	code	image

class	LoggingLazyDB(LazyDB):

				def	__getattr__(self,	name):

								print(‘Called	__getattr__(%s)’	%	name)

								return	super().__getattr__(name)

data	=	LoggingLazyDB()

print(‘exists:’,	data.exists)

print(‘foo:			’,	data.foo)

print(‘foo:			’,	data.foo)

>>>

exists:	5

Called	__getattr__(foo)

foo:				Value	for	foo

foo:				Value	for	foo

The	exists	attribute	is	present	in	the	instance	dictionary,	so	__getattr__	is	never
called	for	it.	The	foo	attribute	is	not	in	the	instance	dictionary	initially,	so
__getattr__	is	called	the	first	time.	But	the	call	to	__getattr__	for	foo	also	does
a	setattr,	which	populates	foo	in	the	instance	dictionary.	This	is	why	the	second	time
I	access	foo	there	isn’t	a	call	to	__getattr__.

This	behavior	is	especially	helpful	for	use	cases	like	lazily	accessing	schemaless	data.
__getattr__	runs	once	to	do	the	hard	work	of	loading	a	property;	all	subsequent
accesses	retrieve	the	existing	result.

Say	you	also	want	transactions	in	this	database	system.	The	next	time	the	user	accesses	a
property,	you	want	to	know	whether	the	corresponding	row	in	the	database	is	still	valid
and	whether	the	transaction	is	still	open.	The	__getattr__	hook	won’t	let	you	do	this
reliably	because	it	will	use	the	object’s	instance	dictionary	as	the	fast	path	for	existing
attributes.

To	enable	this	use	case,	Python	has	another	language	hook	called	__getattribute__.
This	special	method	is	called	every	time	an	attribute	is	accessed	on	an	object,	even	in
cases	where	it	does	exist	in	the	attribute	dictionary.	This	enables	you	to	do	things	like



check	global	transaction	state	on	every	property	access.	Here,	I	define	ValidatingDB
to	log	each	time	__getattribute__	is	called:
Click	here	to	view	code	image

class	ValidatingDB(object):

				def	__init__(self):

								self.exists	=	5

				def	__getattribute__(self,	name):

								print(‘Called	__getattribute__(%s)’	%	name)

								try:

												return	super().__getattribute__(name)

								except	AttributeError:

												value	=	‘Value	for	%s’	%	name

												setattr(self,	name,	value)

												return	value

data	=	ValidatingDB()

print(‘exists:’,	data.exists)

print(‘foo:			’,	data.foo)

print(‘foo:			’,	data.foo)

>>>

Called	__getattribute__(exists)

exists:	5

Called	__getattribute__(foo)

foo:				Value	for	foo

Called	__getattribute__(foo)

foo:				Value	for	foo

In	the	event	that	a	dynamically	accessed	property	shouldn’t	exist,	you	can	raise	an
AttributeError	to	cause	Python’s	standard	missing	property	behavior	for	both
__getattr__	and	__getattribute__.
Click	here	to	view	code	image

class	MissingPropertyDB(object):

				def	__getattr__(self,	name):

								if	name	==	‘bad_name’:

												raise	AttributeError(‘%s	is	missing’	%	name)

								#	…

data	=	MissingPropertyDB()

data.bad_name

>>>

AttributeError:	bad_name	is	missing

Python	code	implementing	generic	functionality	often	relies	on	the	hasattr	built-in
function	to	determine	when	properties	exist,	and	the	getattr	built-in	function	to
retrieve	property	values.	These	functions	also	look	in	the	instance	dictionary	for	an
attribute	name	before	calling	__getattr__.
Click	here	to	view	code	image

data	=	LoggingLazyDB()

print(‘Before:					’,	data.__dict__)

print(‘foo	exists:	‘,	hasattr(data,	‘foo’))

print(‘After:						’,	data.__dict__)



print(‘foo	exists:	‘,	hasattr(data,	‘foo’))

>>>

Before:						{‘exists’:	5}

Called	__getattr__(foo)

foo	exists:		True

After:							{‘exists’:	5,	‘foo’:	‘Value	for	foo’}

foo	exists:		True

In	the	example	above,	__getattr__	is	only	called	once.	In	contrast,	classes	that
implement	__getattribute__	will	have	that	method	called	each	time	hasattr	or
getattr	is	run	on	an	object.
Click	here	to	view	code	image

data	=	ValidatingDB()

print(‘foo	exists:	‘,	hasattr(data,	‘foo’))

print(‘foo	exists:	‘,	hasattr(data,	‘foo’))

>>>

Called	__getattribute__(foo)

foo	exists:		True

Called	__getattribute__(foo)

foo	exists:		True

Now,	say	you	want	to	lazily	push	data	back	to	the	database	when	values	are	assigned	to
your	Python	object.	You	can	do	this	with	__setattr__,	a	similar	language	hook	that
lets	you	intercept	arbitrary	attribute	assignments.	Unlike	retrieving	an	attribute	with
__getattr__	and	__getattribute__,	there’s	no	need	for	two	separate	methods.
The	__setattr__	method	is	always	called	every	time	an	attribute	is	assigned	on	an
instance	(either	directly	or	through	the	setattr	built-in	function).
Click	here	to	view	code	image

class	SavingDB(object):

				def	__setattr__(self,	name,	value):

								#	Save	some	data	to	the	DB	log

								#	…

								super().__setattr__(name,	value)

Here,	I	define	a	logging	subclass	of	SavingDB.	Its	__setattr__	method	is	always
called	on	each	attribute	assignment:
Click	here	to	view	code	image

class	LoggingSavingDB(SavingDB):

				def	__setattr__(self,	name,	value):

								print(‘Called	__setattr__(%s,	%r)’	%	(name,	value))

								super().__setattr__(name,	value)

data	=	LoggingSavingDB()

print(‘Before:	‘,	data.__dict__)

data.foo	=	5

print(‘After:		’,	data.__dict__)

data.foo	=	7

print(‘Finally:’,	data.__dict__)

>>>

Before:		{}

Called	__setattr__(foo,	5)



After:			{‘foo’:	5}

Called	__setattr__(foo,	7)

Finally:	{‘foo’:	7}

The	problem	with	__getattribute__	and	__setattr__	is	that	they’re	called	on
every	attribute	access	for	an	object,	even	when	you	may	not	want	that	to	happen.	For
example,	say	you	want	attribute	accesses	on	your	object	to	actually	look	up	keys	in	an
associated	dictionary.
Click	here	to	view	code	image

class	BrokenDictionaryDB(object):

				def	__init__(self,	data):

								self._data	=	{}

				def	__getattribute__(self,	name):

								print(‘Called	__getattribute__(%s)’	%	name)

								return	self._data[name]

This	requires	accessing	self._data	from	the	__getattribute__	method.
However,	if	you	actually	try	to	do	that,	Python	will	recurse	until	it	reaches	its	stack	limit,
and	then	it’ll	die.
Click	here	to	view	code	image

data	=	BrokenDictionaryDB({‘foo’:	3})

data.foo

>>>

Called	__getattribute__(foo)

Called	__getattribute__(_data)

Called	__getattribute__(_data)

…

Traceback	…

RuntimeError:	maximum	recursion	depth	exceeded

The	problem	is	that	__getattribute__	accesses	self._data,	which	causes
__getattribute__	to	run	again,	which	accesses	self._data	again,	and	so	on.	The
solution	is	to	use	the	super().__getattribute__	method	on	your	instance	to	fetch
values	from	the	instance	attribute	dictionary.	This	avoids	the	recursion.
Click	here	to	view	code	image

class	DictionaryDB(object):

				def	__init__(self,	data):

								self._data	=	data

				def	__getattribute__(self,	name):

								data_dict	=	super().__getattribute__(‘_data’)

								return	data_dict[name]

Similarly,	you’ll	need	__setattr__	methods	that	modify	attributes	on	an	object	to	use
super().__setattr__.

Things	to	Remember
	Use	__getattr__	and	__setattr__	to	lazily	load	and	save	attributes	for	an
object.



	Understand	that	__getattr__	only	gets	called	once	when	accessing	a	missing
attribute,	whereas	__getattribute__	gets	called	every	time	an	attribute	is
accessed.

	Avoid	infinite	recursion	in	__getattribute__	and	__setattr__	by	using
methods	from	super()	(i.e.,	the	object	class)	to	access	instance	attributes
directly.

Item	33:	Validate	Subclasses	with	Metaclasses
One	of	the	simplest	applications	of	metaclasses	is	verifying	that	a	class	was	defined
correctly.	When	you’re	building	a	complex	class	hierarchy,	you	may	want	to	enforce	style,
require	overriding	methods,	or	have	strict	relationships	between	class	attributes.
Metaclasses	enable	these	use	cases	by	providing	a	reliable	way	to	run	your	validation	code
each	time	a	new	subclass	is	defined.

Often	a	class’s	validation	code	runs	in	the	__init__	method,	when	an	object	of	the
class’s	type	is	constructed	(see	Item	28:	“Inherit	from	collections.abc	for	Custom
Container	Types”	for	an	example).	Using	metaclasses	for	validation	can	raise	errors	much
earlier.

Before	I	get	into	how	to	define	a	metaclass	for	validating	subclasses,	it’s	important	to
understand	the	metaclass	action	for	standard	objects.	A	metaclass	is	defined	by	inheriting
from	type.	In	the	default	case,	a	metaclass	receives	the	contents	of	associated	class
statements	in	its	__new__	method.	Here,	you	can	modify	the	class	information	before	the
type	is	actually	constructed:
Click	here	to	view	code	image

class	Meta(type):

				def	__new__(meta,	name,	bases,	class_dict):

								print((meta,	name,	bases,	class_dict))

								return	type.__new__(meta,	name,	bases,	class_dict)

class	MyClass(object,	metaclass=Meta):

				stuff	=	123

				def	foo(self):

								pass

The	metaclass	has	access	to	the	name	of	the	class,	the	parent	classes	it	inherits	from,	and
all	of	the	class	attributes	that	were	defined	in	the	class’s	body.
Click	here	to	view	code	image

>>>

(<class	‘__main__.Meta’>,

	‘MyClass’,

	(<class	‘object’>,),

	{‘__module__’:	‘__main__’,

		‘__qualname__’:	‘MyClass’,

		‘foo’:	<function	MyClass.foo	at	0x102c7dd08>,

		‘stuff’:	123})

Python	2	has	slightly	different	syntax	and	specifies	a	metaclass	using	the
__metaclass__	class	attribute.	The	Meta.__new__	interface	is	the	same.



Click	here	to	view	code	image

#	Python	2

class	Meta(type):

				def	__new__(meta,	name,	bases,	class_dict):

								#	…

class	MyClassInPython2(object):

				__metaclass__	=	Meta

				#	…

You	can	add	functionality	to	the	Meta.__new__	method	in	order	to	validate	all	of	the
parameters	of	a	class	before	it’s	defined.	For	example,	say	you	want	to	represent	any	type
of	multisided	polygon.	You	can	do	this	by	defining	a	special	validating	metaclass	and
using	it	in	the	base	class	of	your	polygon	class	hierarchy.	Note	that	it’s	important	not	to
apply	the	same	validation	to	the	base	class.
Click	here	to	view	code	image

class	ValidatePolygon(type):

				def	__new__(meta,	name,	bases,	class_dict):

								#	Don’t	validate	the	abstract	Polygon	class

								if	bases	!=	(object,):

												if	class_dict[‘sides’]	<	3:

																raise	ValueError(‘Polygons	need	3+	sides’)

								return	type.__new__(meta,	name,	bases,	class_dict)

class	Polygon(object,	metaclass=ValidatePolygon):

				sides	=	None		#	Specified	by	subclasses

				@classmethod

				def	interior_angles(cls):

								return	(cls.sides	-	2)	*	180

class	Triangle(Polygon):

				sides	=	3

If	you	try	to	define	a	polygon	with	fewer	than	three	sides,	the	validation	will	cause	the
class	statement	to	fail	immediately	after	the	class	statement	body.	This	means	your
program	will	not	even	be	able	to	start	running	when	you	define	such	a	class.
Click	here	to	view	code	image

print(‘Before	class’)

class	Line(Polygon):

				print(‘Before	sides’)

				sides	=	1

				print(‘After	sides’)

print(‘After	class’)

>>>

Before	class

Before	sides

After	sides

Traceback	…

ValueError:	Polygons	need	3+	sides



Things	to	Remember
	Use	metaclasses	to	ensure	that	subclasses	are	well	formed	at	the	time	they	are
defined,	before	objects	of	their	type	are	constructed.

	Metaclasses	have	slightly	different	syntax	in	Python	2	vs.	Python	3.

	The	__new__	method	of	metaclasses	is	run	after	the	class	statement’s	entire
body	has	been	processed.

Item	34:	Register	Class	Existence	with	Metaclasses
Another	common	use	of	metaclasses	is	to	automatically	register	types	in	your	program.
Registration	is	useful	for	doing	reverse	lookups,	where	you	need	to	map	a	simple	identifier
back	to	a	corresponding	class.

For	example,	say	you	want	to	implement	your	own	serialized	representation	of	a	Python
object	using	JSON.	You	need	a	way	to	take	an	object	and	turn	it	into	a	JSON	string.	Here,
I	do	this	generically	by	defining	a	base	class	that	records	the	constructor	parameters	and
turns	them	into	a	JSON	dictionary:
Click	here	to	view	code	image

class	Serializable(object):

				def	__init__(self,	*args):

								self.args	=	args

				def	serialize(self):

								return	json.dumps({‘args’:	self.args})

This	class	makes	it	easy	to	serialize	simple,	immutable	data	structures	like	Point2D	to	a
string.
Click	here	to	view	code	image

class	Point2D(Serializable):

				def	__init__(self,	x,	y):

								super().__init__(x,	y)

								self.x	=	x

								self.y	=	y

				def	__repr__(self):

								return	‘Point2D(%d,	%d)’	%	(self.x,	self.y)

point	=	Point2D(5,	3)

print(‘Object:				’,	point)

print(‘Serialized:’,	point.serialize())

>>>

Object:					Point2D(5,	3)

Serialized:	{“args”:	[5,	3]}

Now,	I	need	to	deserialize	this	JSON	string	and	construct	the	Point2D	object	it
represents.	Here,	I	define	another	class	that	can	deserialize	the	data	from	its
Serializable	parent	class:
Click	here	to	view	code	image



class	Deserializable(Serializable):

				@classmethod

				def	deserialize(cls,	json_data):

								params	=	json.loads(json_data)

								return	cls(*params[‘args’])

Using	Deserializable	makes	it	easy	to	serialize	and	deserialize	simple,	immutable
objects	in	a	generic	way.
Click	here	to	view	code	image

class	BetterPoint2D(Deserializable):

				#	…

point	=	BetterPoint2D(5,	3)

print(‘Before:				’,	point)

data	=	point.serialize()

print(‘Serialized:’,	data)

after	=	BetterPoint2D.deserialize(data)

print(‘After:					’,	after)

>>>

Before:					BetterPoint2D(5,	3)

Serialized:	{“args”:	[5,	3]}

After:						BetterPoint2D(5,	3)

The	problem	with	this	approach	is	that	it	only	works	if	you	know	the	intended	type	of	the
serialized	data	ahead	of	time	(e.g.,	Point2D,	BetterPoint2D).	Ideally,	you’d	have	a
large	number	of	classes	serializing	to	JSON	and	one	common	function	that	could
deserialize	any	of	them	back	to	a	corresponding	Python	object.

To	do	this,	I	can	include	the	serialized	object’s	class	name	in	the	JSON	data.
Click	here	to	view	code	image

class	BetterSerializable(object):

				def	__init__(self,	*args):

								self.args	=	args

				def	serialize(self):

								return	json.dumps({

												‘class’:	self.__class__.__name__,

												‘args’:	self.args,

								})

				def	__repr__(self):

								#	…

Then,	I	can	maintain	a	mapping	of	class	names	back	to	constructors	for	those	objects.	The
general	deserialize	function	will	work	for	any	classes	passed	to
register_class.
Click	here	to	view	code	image

registry	=	{}

def	register_class(target_class):

				registry[target_class.__name__]	=	target_class

def	deserialize(data):

				params	=	json.loads(data)

				name	=	params[‘class’]

				target_class	=	registry[name]



				return	target_class(*params[‘args’])

To	ensure	that	deserialize	always	works	properly,	I	must	call	register_class
for	every	class	I	may	want	to	deserialize	in	the	future.
Click	here	to	view	code	image

class	EvenBetterPoint2D(BetterSerializable):

				def	__init__(self,	x,	y):

								super().__init__(x,	y)

								self.x	=	x

								self.y	=	y

register_class(EvenBetterPoint2D)

Now,	I	can	deserialize	an	arbitrary	JSON	string	without	having	to	know	which	class	it
contains.
Click	here	to	view	code	image

point	=	EvenBetterPoint2D(5,	3)

print(‘Before:				’,	point)

data	=	point.serialize()

print(‘Serialized:’,	data)

after	=	deserialize(data)

print(‘After:					’,	after)

>>>

Before:					EvenBetterPoint2D(5,	3)

Serialized:	{“class”:	“EvenBetterPoint2D”,	“args”:	[5,	3]}

After:						EvenBetterPoint2D(5,	3)

The	problem	with	this	approach	is	that	you	can	forget	to	call	register_class.
Click	here	to	view	code	image

class	Point3D(BetterSerializable):

				def	__init__(self,	x,	y,	z):

								super().__init__(x,	y,	z)

								self.x	=	x

								self.y	=	y

								self.z	=	z

#	Forgot	to	call	register_class!	Whoops!

This	will	cause	your	code	to	break	at	runtime,	when	you	finally	try	to	deserialize	an	object
of	a	class	you	forgot	to	register.

point	=	Point3D(5,	9,	-4)

data	=	point.serialize()

deserialize(data)

>>>

KeyError:	‘Point3D’

Even	though	you	chose	to	subclass	BetterSerializable,	you	won’t	actually	get	all
of	its	features	if	you	forget	to	call	register_class	after	your	class	statement	body.
This	approach	is	error	prone	and	especially	challenging	for	beginners.	The	same	omission
can	happen	with	class	decorators	in	Python	3.

What	if	you	could	somehow	act	on	the	programmer’s	intent	to	use



BetterSerializable	and	ensure	that	register_class	is	called	in	all	cases?
Metaclasses	enable	this	by	intercepting	the	class	statement	when	subclasses	are	defined
(see	Item	33:	“Validate	Subclasses	with	Metaclasses”).	This	lets	you	register	the	new	type
immediately	after	the	class’s	body.
Click	here	to	view	code	image

class	Meta(type):

				def	__new__(meta,	name,	bases,	class_dict):

								cls	=	type.__new__(meta,	name,	bases,	class_dict)

								register_class(cls)

								return	cls

class	RegisteredSerializable(BetterSerializable,

																													metaclass=Meta):

				pass

When	I	define	a	subclass	of	RegisteredSerializable,	I	can	be	confident	that	the
call	to	register_class	happened	and	deserialize	will	always	work	as	expected.
Click	here	to	view	code	image

class	Vector3D(RegisteredSerializable):

				def	__init__(self,	x,	y,	z):

								super().__init__(x,	y,	z)

								self.x,	self.y,	self.z	=	x,	y,	z

v3	=	Vector3D(10,	-7,	3)

print(‘Before:				’,	v3)

data	=	v3.serialize()

print(‘Serialized:’,	data)

print(‘After:					’,	deserialize(data))

>>>

Before:					Vector3D(10,	-7,	3)

Serialized:	{“class”:	“Vector3D”,	“args”:	[10,	-7,	3]}

After:						Vector3D(10,	-7,	3)

Using	metaclasses	for	class	registration	ensures	that	you’ll	never	miss	a	class	as	long	as
the	inheritance	tree	is	right.	This	works	well	for	serialization,	as	I’ve	shown,	and	also
applies	to	database	object-relationship	mappings	(ORMs),	plug-in	systems,	and	system
hooks.

Things	to	Remember
	Class	registration	is	a	helpful	pattern	for	building	modular	Python	programs.

	Metaclasses	let	you	run	registration	code	automatically	each	time	your	base	class	is
subclassed	in	a	program.

	Using	metaclasses	for	class	registration	avoids	errors	by	ensuring	that	you	never
miss	a	registration	call.



Item	35:	Annotate	Class	Attributes	with	Metaclasses
One	more	useful	feature	enabled	by	metaclasses	is	the	ability	to	modify	or	annotate
properties	after	a	class	is	defined	but	before	the	class	is	actually	used.	This	approach	is
commonly	used	with	descriptors	(see	Item	31:	“Use	Descriptors	for	Reusable
@property	Methods”)	to	give	them	more	introspection	into	how	they’re	being	used
within	their	containing	class.

For	example,	say	you	want	to	define	a	new	class	that	represents	a	row	in	your	customer
database.	You’d	like	a	corresponding	property	on	the	class	for	each	column	in	the	database
table.	To	do	this,	here	I	define	a	descriptor	class	to	connect	attributes	to	column	names.
Click	here	to	view	code	image

class	Field(object):

				def	__init__(self,	name):

								self.name	=	name

								self.internal_name	=	‘_’	+	self.name

				def	__get__(self,	instance,	instance_type):

								if	instance	is	None:	return	self

								return	getattr(instance,	self.internal_name,	”)

				def	__set__(self,	instance,	value):

								setattr(instance,	self.internal_name,	value)

With	the	column	name	stored	in	the	Field	descriptor,	I	can	save	all	of	the	per-instance
state	directly	in	the	instance	dictionary	as	protected	fields	using	the	setattr	and
getattr	built-in	functions.	At	first,	this	seems	to	be	much	more	convenient	than
building	descriptors	with	weakref	to	avoid	memory	leaks.

Defining	the	class	representing	a	row	requires	supplying	the	column	name	for	each	class
attribute.
Click	here	to	view	code	image

class	Customer(object):

				#	Class	attributes

				first_name	=	Field(‘first_name’)

				last_name	=	Field(‘last_name’)

				prefix	=	Field(‘prefix’)

				suffix	=	Field(‘suffix’)

Using	the	class	is	simple.	Here,	you	can	see	how	the	Field	descriptors	modify	the
instance	dictionary	__dict__	as	expected:
Click	here	to	view	code	image

foo	=	Customer()

print(‘Before:’,	repr(foo.first_name),	foo.__dict__)

foo.first_name	=	‘Euclid’

print(‘After:	‘,	repr(foo.first_name),	foo.__dict__)

>>>

Before:	”	{}

After:		‘Euclid’	{‘_first_name’:	‘Euclid’}

But	it	seems	redundant.	I	already	declared	the	name	of	the	field	when	I	assigned	the



constructed	Field	object	to	Customer.first_name	in	the	class	statement	body.
Why	do	I	also	have	to	pass	the	field	name	('first_name'	in	this	case)	to	the	Field
constructor?
The	problem	is	that	the	order	of	operations	in	the	Customer	class	definition	is	the
opposite	of	how	it	reads	from	left	to	right.	First,	the	Field	constructor	is	called	as
Field('first_name').	Then,	the	return	value	of	that	is	assigned	to
Customer.field_name.	There’s	no	way	for	the	Field	to	know	upfront	which	class
attribute	it	will	be	assigned	to.

To	eliminate	the	redundancy,	I	can	use	a	metaclass.	Metaclasses	let	you	hook	the	class
statement	directly	and	take	action	as	soon	as	a	class	body	is	finished.	In	this	case,	I	can
use	the	metaclass	to	assign	Field.name	and	Field.internal_name	on	the
descriptor	automatically	instead	of	manually	specifying	the	field	name	multiple	times.
Click	here	to	view	code	image

class	Meta(type):

				def	__new__(meta,	name,	bases,	class_dict):

								for	key,	value	in	class_dict.items():

												if	isinstance(value,	Field):

																value.name	=	key

																value.internal_name	=	‘_’	+	key

								cls	=	type.__new__(meta,	name,	bases,	class_dict)

								return	cls

Here,	I	define	a	base	class	that	uses	the	metaclass.	All	classes	representing	database	rows
should	inherit	from	this	class	to	ensure	that	they	use	the	metaclass:
Click	here	to	view	code	image

class	DatabaseRow(object,	metaclass=Meta):

				pass

To	work	with	the	metaclass,	the	field	descriptor	is	largely	unchanged.	The	only	difference
is	that	it	no	longer	requires	any	arguments	to	be	passed	to	its	constructor.	Instead,	its
attributes	are	set	by	the	Meta.__new__	method	above.
Click	here	to	view	code	image

class	Field(object):

				def	__init__(self):

								#	These	will	be	assigned	by	the	metaclass.

								self.name	=	None

								self.internal_name	=	None

				#	…

By	using	the	metaclass,	the	new	DatabaseRow	base	class,	and	the	new	Field
descriptor,	the	class	definition	for	a	database	row	no	longer	has	the	redundancy	from
before.
Click	here	to	view	code	image

class	BetterCustomer(DatabaseRow):

				first_name	=	Field()

				last_name	=	Field()

				prefix	=	Field()

				suffix	=	Field()



The	behavior	of	the	new	class	is	identical	to	the	old	one.
Click	here	to	view	code	image

foo	=	BetterCustomer()

print(‘Before:’,	repr(foo.first_name),	foo.__dict__)

foo.first_name	=	‘Euler’

print(‘After:	‘,	repr(foo.first_name),	foo.__dict__)

>>>

Before:	”	{}

After:		‘Euler’	{‘_first_name’:	‘Euler’}

Things	to	Remember
	Metaclasses	enable	you	to	modify	a	class’s	attributes	before	the	class	is	fully
defined.

	Descriptors	and	metaclasses	make	a	powerful	combination	for	declarative	behavior
and	runtime	introspection.

	You	can	avoid	both	memory	leaks	and	the	weakref	module	by	using	metaclasses
along	with	descriptors.



5.	Concurrency	and	Parallelism

Concurrency	is	when	a	computer	does	many	different	things	seemingly	at	the	same	time.
For	example,	on	a	computer	with	one	CPU	core,	the	operating	system	will	rapidly	change
which	program	is	running	on	the	single	processor.	This	interleaves	execution	of	the
programs,	providing	the	illusion	that	the	programs	are	running	simultaneously.

Parallelism	is	actually	doing	many	different	things	at	the	same	time.	Computers	with
multiple	CPU	cores	can	execute	multiple	programs	simultaneously.	Each	CPU	core	runs
the	instructions	of	a	separate	program,	allowing	each	program	to	make	forward	progress
during	the	same	instant.

Within	a	single	program,	concurrency	is	a	tool	that	makes	it	easier	for	programmers	to
solve	certain	types	of	problems.	Concurrent	programs	enable	many	distinct	paths	of
execution	to	make	forward	progress	in	a	way	that	seems	to	be	both	simultaneous	and
independent.

The	key	difference	between	parallelism	and	concurrency	is	speedup.	When	two	distinct
paths	of	execution	in	a	program	make	forward	progress	in	parallel,	the	time	it	takes	to	do
the	total	work	is	cut	in	half;	the	speed	of	execution	is	faster	by	a	factor	of	two.	In	contrast,
concurrent	programs	may	run	thousands	of	separate	paths	of	execution	seemingly	in
parallel	but	provide	no	speedup	for	the	total	work.

Python	makes	it	easy	to	write	concurrent	programs.	Python	can	also	be	used	to	do	parallel
work	through	system	calls,	subprocesses,	and	C-extensions.	But	it	can	be	very	difficult	to
make	concurrent	Python	code	truly	run	in	parallel.	It’s	important	to	understand	how	to	best
utilize	Python	in	these	subtly	different	situations.

Item	36:	Use	subprocess	to	Manage	Child	Processes
Python	has	battle-hardened	libraries	for	running	and	managing	child	processes.	This
makes	Python	a	great	language	for	gluing	other	tools	together,	such	as	command-line
utilities.	When	existing	shell	scripts	get	complicated,	as	they	often	do	over	time,
graduating	them	to	a	rewrite	in	Python	is	a	natural	choice	for	the	sake	of	readability	and
maintainability.

Child	processes	started	by	Python	are	able	to	run	in	parallel,	enabling	you	to	use	Python	to
consume	all	of	the	CPU	cores	of	your	machine	and	maximize	the	throughput	of	your
programs.	Although	Python	itself	may	be	CPU	bound	(see	Item	37:	“Use	Threads	for
Blocking	I/O,	Avoid	for	Parallelism”),	it’s	easy	to	use	Python	to	drive	and	coordinate
CPU-intensive	workloads.

Python	has	had	many	ways	to	run	subprocesses	over	the	years,	including	popen,
popen2,	and	os.exec*.	With	the	Python	of	today,	the	best	and	simplest	choice	for
managing	child	processes	is	to	use	the	subprocess	built-in	module.

Running	a	child	process	with	subprocess	is	simple.	Here,	the	Popen	constructor	starts
the	process.	The	communicate	method	reads	the	child	process’s	output	and	waits	for
termination.



Click	here	to	view	code	image

proc	=	subprocess.Popen(

				[‘echo’,	‘Hello	from	the	child!’],

				stdout=subprocess.PIPE)

out,	err	=	proc.communicate()

print(out.decode(‘utf-8’))

>>>

Hello	from	the	child!

Child	processes	will	run	independently	from	their	parent	process,	the	Python	interpreter.
Their	status	can	be	polled	periodically	while	Python	does	other	work.
Click	here	to	view	code	image

proc	=	subprocess.Popen([‘sleep’,	‘0.3’])

while	proc.poll()	is	None:

				print(‘Working…’)

				#	Some	time-consuming	work	here

				#	…

print(‘Exit	status’,	proc.poll())

>>>

Working…

Working…

Exit	status	0

Decoupling	the	child	process	from	the	parent	means	that	the	parent	process	is	free	to	run
many	child	processes	in	parallel.	You	can	do	this	by	starting	all	the	child	processes
together	upfront.
Click	here	to	view	code	image

def	run_sleep(period):

				proc	=	subprocess.Popen([‘sleep’,	str(period)])

				return	proc

start	=	time()

procs	=	[]

for	_	in	range(10):

				proc	=	run_sleep(0.1)

				procs.append(proc)

Later,	you	can	wait	for	them	to	finish	their	I/O	and	terminate	with	the	communicate
method.
Click	here	to	view	code	image

for	proc	in	procs:

				proc.communicate()

end	=	time()

print(‘Finished	in	%.3f	seconds’	%	(end	-	start))

>>>

Finished	in	0.117	seconds



Note

If	these	processes	ran	in	sequence,	the	total	delay	would	be	1	second,	not	the	~0.1
second	I	measured.

You	can	also	pipe	data	from	your	Python	program	into	a	subprocess	and	retrieve	its
output.	This	allows	you	to	utilize	other	programs	to	do	work	in	parallel.	For	example,	say
you	want	to	use	the	openssl	command-line	tool	to	encrypt	some	data.	Starting	the	child
process	with	command-line	arguments	and	I/O	pipes	is	easy.
Click	here	to	view	code	image

def	run_openssl(data):

				env	=	os.environ.copy()

				env[‘password’]	=	b’\xe24U\n\xd0Ql3S\x11’

				proc	=	subprocess.Popen(

								[‘openssl’,	‘enc’,	‘-des3’,	‘-pass’,	‘env:password’],

								env=env,

								stdin=subprocess.PIPE,

								stdout=subprocess.PIPE)

				proc.stdin.write(data)

				proc.stdin.flush()		#	Ensure	the	child	gets	input

				return	proc

Here,	I	pipe	random	bytes	into	the	encryption	function,	but	in	practice	this	would	be	user
input,	a	file	handle,	a	network	socket,	etc.:

procs	=	[]

for	_	in	range(3):

				data	=	os.urandom(10)

				proc	=	run_openssl(data)

				procs.append(proc)

The	child	processes	will	run	in	parallel	and	consume	their	input.	Here,	I	wait	for	them	to
finish	and	then	retrieve	their	final	output:
Click	here	to	view	code	image

for	proc	in	procs:

				out,	err	=	proc.communicate()

				print(out[-10:])

>>>

b’o4,G\x91\x95\xfe\xa0\xaa\xb7’

b’\x0b\x01\\xb1\xb7\xfb\xb2C\xe1b’

b’ds\xc5\xf4;j\x1f\xd0c-‘

You	can	also	create	chains	of	parallel	processes	just	like	UNIX	pipes,	connecting	the
output	of	one	child	process	into	the	input	of	another,	and	so	on.	Here’s	a	function	that
starts	a	child	process	that	will	cause	the	md5	command-line	tool	to	consume	an	input
stream:
Click	here	to	view	code	image

def	run_md5(input_stdin):

				proc	=	subprocess.Popen(

								[‘md5’],

								stdin=input_stdin,

								stdout=subprocess.PIPE)



				return	proc

Note

Python’s	hashlib	built-in	module	provides	the	md5	function,	so	running	a
subprocess	like	this	isn’t	always	necessary.	The	goal	here	is	to	demonstrate	how
subprocesses	can	pipe	inputs	and	outputs.

Now,	I	can	kick	off	a	set	of	openssl	processes	to	encrypt	some	data	and	another	set	of
processes	to	md5	hash	the	encrypted	output.
Click	here	to	view	code	image

input_procs	=	[]

hash_procs	=	[]

for	_	in	range(3):

				data	=	os.urandom(10)

				proc	=	run_openssl(data)

				input_procs.append(proc)

				hash_proc	=	run_md5(proc.stdout)

				hash_procs.append(hash_proc)

The	I/O	between	the	child	processes	will	happen	automatically	once	you	get	them	started.
All	you	need	to	do	is	wait	for	them	to	finish	and	print	the	final	output.
Click	here	to	view	code	image

for	proc	in	input_procs:

				proc.communicate()

for	proc	in	hash_procs:

				out,	err	=	proc.communicate()

				print(out.strip())

>>>

b‘7a1822875dcf9650a5a71e5e41e77bf3’

b’d41d8cd98f00b204e9800998ecf8427e’

b‘1720f581cfdc448b6273048d42621100’

If	you’re	worried	about	the	child	processes	never	finishing	or	somehow	blocking	on	input
or	output	pipes,	then	be	sure	to	pass	the	timeout	parameter	to	the	communicate
method.	This	will	cause	an	exception	to	be	raised	if	the	child	process	hasn’t	responded
within	a	time	period,	giving	you	a	chance	to	terminate	the	misbehaving	child.
Click	here	to	view	code	image

proc	=	run_sleep(10)

try:

				proc.communicate(timeout=0.1)

except	subprocess.TimeoutExpired:

				proc.terminate()

				proc.wait()

print(‘Exit	status’,	proc.poll())

>>>

Exit	status	-15

Unfortunately,	the	timeout	parameter	is	only	available	in	Python	3.3	and	later.	In	earlier
versions	of	Python,	you’ll	need	to	use	the	select	built-in	module	on	proc.stdin,



proc.stdout,	and	proc.stderr	in	order	to	enforce	timeouts	on	I/O.

Things	to	Remember
	Use	the	subprocess	module	to	run	child	processes	and	manage	their	input	and
output	streams.

	Child	processes	run	in	parallel	with	the	Python	interpreter,	enabling	you	to
maximize	your	CPU	usage.

	Use	the	timeout	parameter	with	communicate	to	avoid	deadlocks	and	hanging
child	processes.

Item	37:	Use	Threads	for	Blocking	I/O,	Avoid	for
Parallelism
The	standard	implementation	of	Python	is	called	CPython.	CPython	runs	a	Python
program	in	two	steps.	First,	it	parses	and	compiles	the	source	text	into	bytecode.	Then,	it
runs	the	bytecode	using	a	stack-based	interpreter.	The	bytecode	interpreter	has	state	that
must	be	maintained	and	coherent	while	the	Python	program	executes.	Python	enforces
coherence	with	a	mechanism	called	the	global	interpreter	lock	(GIL).

Essentially,	the	GIL	is	a	mutual-exclusion	lock	(mutex)	that	prevents	CPython	from	being
affected	by	preemptive	multithreading,	where	one	thread	takes	control	of	a	program	by
interrupting	another	thread.	Such	an	interruption	could	corrupt	the	interpreter	state	if	it
comes	at	an	unexpected	time.	The	GIL	prevents	these	interruptions	and	ensures	that	every
bytecode	instruction	works	correctly	with	the	CPython	implementation	and	its	C-
extension	modules.

The	GIL	has	an	important	negative	side	effect.	With	programs	written	in	languages	like
C++	or	Java,	having	multiple	threads	of	execution	means	your	program	could	utilize
multiple	CPU	cores	at	the	same	time.	Although	Python	supports	multiple	threads	of
execution,	the	GIL	causes	only	one	of	them	to	make	forward	progress	at	a	time.	This
means	that	when	you	reach	for	threads	to	do	parallel	computation	and	speed	up	your
Python	programs,	you	will	be	sorely	disappointed.

For	example,	say	you	want	to	do	something	computationally	intensive	with	Python.	I’ll
use	a	naive	number	factorization	algorithm	as	a	proxy.
Click	here	to	view	code	image

def	factorize(number):

				for	i	in	range(1,	number	+	1):

								if	number	%	i	==	0:

												yield	i

Factoring	a	set	of	numbers	in	serial	takes	quite	a	long	time.
Click	here	to	view	code	image

numbers	=	[2139079,	1214759,	1516637,	1852285]

start	=	time()

for	number	in	numbers:

				list(factorize(number))



end	=	time()

print(‘Took	%.3f	seconds’	%	(end	-	start))

>>>

Took	1.040	seconds

Using	multiple	threads	to	do	this	computation	would	make	sense	in	other	languages
because	you	could	take	advantage	of	all	of	the	CPU	cores	of	your	computer.	Let	me	try
that	in	Python.	Here,	I	define	a	Python	thread	for	doing	the	same	computation	as	before:
Click	here	to	view	code	image

from	threading	import	Thread

class	FactorizeThread(Thread):

				def	__init__(self,	number):

								super().__init__()

								self.number	=	number

				def	run(self):

								self.factors	=	list(factorize(self.number))

Then,	I	start	a	thread	for	factorizing	each	number	in	parallel.
Click	here	to	view	code	image

start	=	time()

threads	=	[]

for	number	in	numbers:

				thread	=	FactorizeThread(number)

				thread.start()

				threads.append(thread)

Finally,	I	wait	for	all	of	the	threads	to	finish.
Click	here	to	view	code	image

for	thread	in	threads:

				thread.join()

end	=	time()

print(‘Took	%.3f	seconds’	%	(end	-	start))

>>>

Took	1.061	seconds

What’s	surprising	is	that	this	takes	even	longer	than	running	factorize	in	serial.	With
one	thread	per	number,	you	may	expect	less	than	a	4×	speedup	in	other	languages	due	to
the	overhead	of	creating	threads	and	coordinating	with	them.	You	may	expect	only	a	2×
speedup	on	the	dual-core	machine	I	used	to	run	this	code.	But	you	would	never	expect	the
performance	of	these	threads	to	be	worse	when	you	have	multiple	CPUs	to	utilize.	This
demonstrates	the	effect	of	the	GIL	on	programs	running	in	the	standard	CPython
interpreter.

There	are	ways	to	get	CPython	to	utilize	multiple	cores,	but	it	doesn’t	work	with	the
standard	Thread	class	(see	Item	41:	“Consider	concurrent.futures	for	True
Parallelism”)	and	it	can	require	substantial	effort.	Knowing	these	limitations	you	may
wonder,	why	does	Python	support	threads	at	all?	There	are	two	good	reasons.

First,	multiple	threads	make	it	easy	for	your	program	to	seem	like	it’s	doing	multiple
things	at	the	same	time.	Managing	the	juggling	act	of	simultaneous	tasks	is	difficult	to



implement	yourself	(see	Item	40:	“Consider	Coroutines	to	Run	Many	Functions
Concurrently”	for	an	example).	With	threads,	you	can	leave	it	to	Python	to	run	your
functions	seemingly	in	parallel.	This	works	because	CPython	ensures	a	level	of	fairness
between	Python	threads	of	execution,	even	though	only	one	of	them	makes	forward
progress	at	a	time	due	to	the	GIL.
The	second	reason	Python	supports	threads	is	to	deal	with	blocking	I/O,	which	happens
when	Python	does	certain	types	of	system	calls.	System	calls	are	how	your	Python
program	asks	your	computer’s	operating	system	to	interact	with	the	external	environment
on	your	behalf.	Blocking	I/O	includes	things	like	reading	and	writing	files,	interacting
with	networks,	communicating	with	devices	like	displays,	etc.	Threads	help	you	handle
blocking	I/O	by	insulating	your	program	from	the	time	it	takes	for	the	operating	system	to
respond	to	your	requests.

For	example,	say	you	want	to	send	a	signal	to	a	remote-controlled	helicopter	through	a
serial	port.	I’ll	use	a	slow	system	call	(select)	as	a	proxy	for	this	activity.	This	function
asks	the	operating	system	to	block	for	0.1	second	and	then	return	control	to	my	program,
similar	to	what	would	happen	when	using	a	synchronous	serial	port.
Click	here	to	view	code	image

import	select

def	slow_systemcall():

				select.select([],	[],	[],	0.1)

Running	this	system	call	in	serial	requires	a	linearly	increasing	amount	of	time.
Click	here	to	view	code	image

start	=	time()

for	_	in	range(5):

				slow_systemcall()

end	=	time()

print(‘Took	%.3f	seconds’	%	(end	-	start))

>>>

Took	0.503	seconds

The	problem	is	that	while	the	slow_systemcall	function	is	running,	my	program
can’t	make	any	other	progress.	My	program’s	main	thread	of	execution	is	blocked	on	the
select	system	call.	This	situation	is	awful	in	practice.	You	need	to	be	able	to	compute
your	helicopter’s	next	move	while	you’re	sending	it	a	signal,	otherwise	it’ll	crash.	When
you	find	yourself	needing	to	do	blocking	I/O	and	computation	simultaneously,	it’s	time	to
consider	moving	your	system	calls	to	threads.

Here,	I	run	multiple	invocations	of	the	slow_systemcall	function	in	separate	threads.
This	would	allow	you	to	communicate	with	multiple	serial	ports	(and	helicopters)	at	the
same	time,	while	leaving	the	main	thread	to	do	whatever	computation	is	required.
Click	here	to	view	code	image

start	=	time()

threads	=	[]

for	_	in	range(5):

				thread	=	Thread(target=slow_systemcall)

				thread.start()



				threads.append(thread)

With	the	threads	started,	here	I	do	some	work	to	calculate	the	next	helicopter	move	before
waiting	for	the	system	call	threads	to	finish.
Click	here	to	view	code	image

def	compute_helicopter_location(index):

				#	…

for	i	in	range(5):

				compute_helicopter_location(i)

for	thread	in	threads:

				thread.join()

end	=	time()

print(‘Took	%.3f	seconds’	%	(end	-	start))

>>>

Took	0.102	seconds

The	parallel	time	is	5×	less	than	the	serial	time.	This	shows	that	the	system	calls	will	all
run	in	parallel	from	multiple	Python	threads	even	though	they’re	limited	by	the	GIL.	The
GIL	prevents	my	Python	code	from	running	in	parallel,	but	it	has	no	negative	effect	on
system	calls.	This	works	because	Python	threads	release	the	GIL	just	before	they	make
system	calls	and	reacquire	the	GIL	as	soon	as	the	system	calls	are	done.

There	are	many	other	ways	to	deal	with	blocking	I/O	besides	threads,	such	as	the
asyncio	built-in	module,	and	these	alternatives	have	important	benefits.	But	these
options	also	require	extra	work	in	refactoring	your	code	to	fit	a	different	model	of
execution	(see	Item	40:	“Consider	Coroutines	to	Run	Many	Functions	Concurrently”).
Using	threads	is	the	simplest	way	to	do	blocking	I/O	in	parallel	with	minimal	changes	to
your	program.

Things	to	Remember
	Python	threads	can’t	run	bytecode	in	parallel	on	multiple	CPU	cores	because	of	the
global	interpreter	lock	(GIL).

	Python	threads	are	still	useful	despite	the	GIL	because	they	provide	an	easy	way	to
do	multiple	things	at	seemingly	the	same	time.

	Use	Python	threads	to	make	multiple	system	calls	in	parallel.	This	allows	you	to	do
blocking	I/O	at	the	same	time	as	computation.

Item	38:	Use	Lock	to	Prevent	Data	Races	in	Threads
After	learning	about	the	global	interpreter	lock	(GIL)	(see	Item	37:	“Use	Threads	for
Blocking	I/O,	Avoid	for	Parallelism”),	many	new	Python	programmers	assume	they	can
forgo	using	mutual-exclusion	locks	(mutexes)	in	their	code	altogether.	If	the	GIL	is
already	preventing	Python	threads	from	running	on	multiple	CPU	cores	in	parallel,	it	must
also	act	as	a	lock	for	a	program’s	data	structures,	right?	Some	testing	on	types	like	lists
and	dictionaries	may	even	show	that	this	assumption	appears	to	hold.

But	beware,	this	is	truly	not	the	case.	The	GIL	will	not	protect	you.	Although	only	one



Python	thread	runs	at	a	time,	a	thread’s	operations	on	data	structures	can	be	interrupted
between	any	two	bytecode	instructions	in	the	Python	interpreter.	This	is	dangerous	if	you
access	the	same	objects	from	multiple	threads	simultaneously.	The	invariants	of	your	data
structures	could	be	violated	at	practically	any	time	because	of	these	interruptions,	leaving
your	program	in	a	corrupted	state.
For	example,	say	you	want	to	write	a	program	that	counts	many	things	in	parallel,	like
sampling	light	levels	from	a	whole	network	of	sensors.	If	you	want	to	determine	the	total
number	of	light	samples	over	time,	you	can	aggregate	them	with	a	new	class.
Click	here	to	view	code	image

class	Counter(object):

				def	__init__(self):

								self.count	=	0

				def	increment(self,	offset):

								self.count	+=	offset

Imagine	that	each	sensor	has	its	own	worker	thread	because	reading	from	the	sensor
requires	blocking	I/O.	After	each	sensor	measurement,	the	worker	thread	increments	the
counter	up	to	a	maximum	number	of	desired	readings.
Click	here	to	view	code	image

def	worker(sensor_index,	how_many,	counter):

				for	_	in	range(how_many):

								#	Read	from	the	sensor

								#	…

								counter.increment(1)

Here,	I	define	a	function	that	starts	a	worker	thread	for	each	sensor	and	waits	for	them	all
to	finish	their	readings:
Click	here	to	view	code	image

def	run_threads(func,	how_many,	counter):

				threads	=	[]

				for	i	in	range(5):

								args	=	(i,	how_many,	counter)

								thread	=	Thread(target=func,	args=args)

								threads.append(thread)

								thread.start()

				for	thread	in	threads:

								thread.join()

Running	five	threads	in	parallel	seems	simple,	and	the	outcome	should	be	obvious.
Click	here	to	view	code	image

how_many	=	10**5

counter	=	Counter()

run_threads(worker,	how_many,	counter)

print(‘Counter	should	be	%d,	found	%d’	%

						(5	*	how_many,	counter.count))

>>>

Counter	should	be	500000,	found	278328

But	this	result	is	way	off!	What	happened	here?	How	could	something	so	simple	go	so
wrong,	especially	since	only	one	Python	interpreter	thread	can	run	at	a	time?



The	Python	interpreter	enforces	fairness	between	all	of	the	threads	that	are	executing	to
ensure	they	get	a	roughly	equal	amount	of	processing	time.	To	do	this,	Python	will
suspend	a	thread	as	it’s	running	and	will	resume	another	thread	in	turn.	The	problem	is
that	you	don’t	know	exactly	when	Python	will	suspend	your	threads.	A	thread	can	even	be
paused	seemingly	halfway	through	what	looks	like	an	atomic	operation.	That’s	what
happened	in	this	case.

The	Counter	object’s	increment	method	looks	simple.
counter.count	+=	offset

But	the	+=	operator	used	on	an	object	attribute	actually	instructs	Python	to	do	three
separate	operations	behind	the	scenes.	The	statement	above	is	equivalent	to	this:
Click	here	to	view	code	image

value	=	getattr(counter,	‘count’)

result	=	value	+	offset

setattr(counter,	‘count’,	result)

Python	threads	incrementing	the	counter	can	be	suspended	between	any	two	of	these
operations.	This	is	problematic	if	the	way	the	operations	interleave	causes	old	versions	of
value	to	be	assigned	to	the	counter.	Here’s	an	example	of	bad	interaction	between	two
threads,	A	and	B:
Click	here	to	view	code	image

#	Running	in	Thread	A

value_a	=	getattr(counter,	‘count’)

#	Context	switch	to	Thread	B

value_b	=	getattr(counter,	‘count’)

result_b	=	value_b	+	1

setattr(counter,	‘count’,	result_b)

#	Context	switch	back	to	Thread	A

result_a	=	value_a	+	1

setattr(counter,	‘count’,	result_a)

Thread	A	stomped	on	thread	B,	erasing	all	of	its	progress	incrementing	the	counter.	This	is
exactly	what	happened	in	the	light	sensor	example	above.

To	prevent	data	races	like	these	and	other	forms	of	data	structure	corruption,	Python
includes	a	robust	set	of	tools	in	the	threading	built-in	module.	The	simplest	and	most
useful	of	them	is	the	Lock	class,	a	mutual-exclusion	lock	(mutex).

By	using	a	lock,	I	can	have	the	Counter	class	protect	its	current	value	against
simultaneous	access	from	multiple	threads.	Only	one	thread	will	be	able	to	acquire	the
lock	at	a	time.	Here,	I	use	a	with	statement	to	acquire	and	release	the	lock;	this	makes	it
easier	to	see	which	code	is	executing	while	the	lock	is	held	(see	Item	43:	“Consider
contextlib	and	with	Statements	for	Reusable	try/finally	Behavior”	for	details):
Click	here	to	view	code	image

class	LockingCounter(object):

				def	__init__(self):

								self.lock	=	Lock()

								self.count	=	0

				def	increment(self,	offset):



								with	self.lock:

												self.count	+=	offset

Now	I	run	the	worker	threads	as	before,	but	use	a	LockingCounter	instead.
Click	here	to	view	code	image

counter	=	LockingCounter()

run_threads(worker,	how_many,	counter)

print(‘Counter	should	be	%d,	found	%d’	%

						(5	*	how_many,	counter.count))

>>>

Counter	should	be	500000,	found	500000

The	result	is	exactly	what	I	expect.	The	Lock	solved	the	problem.

Things	to	Remember
	Even	though	Python	has	a	global	interpreter	lock,	you’re	still	responsible	for
protecting	against	data	races	between	the	threads	in	your	programs.

	Your	programs	will	corrupt	their	data	structures	if	you	allow	multiple	threads	to
modify	the	same	objects	without	locks.

	The	Lock	class	in	the	threading	built-in	module	is	Python’s	standard	mutual
exclusion	lock	implementation.

Item	39:	Use	Queue	to	Coordinate	Work	Between	Threads
Python	programs	that	do	many	things	concurrently	often	need	to	coordinate	their	work.
One	of	the	most	useful	arrangements	for	concurrent	work	is	a	pipeline	of	functions.

A	pipeline	works	like	an	assembly	line	used	in	manufacturing.	Pipelines	have	many
phases	in	serial	with	a	specific	function	for	each	phase.	New	pieces	of	work	are	constantly
added	to	the	beginning	of	the	pipeline.	Each	function	can	operate	concurrently	on	the
piece	of	work	in	its	phase.	The	work	moves	forward	as	each	function	completes	until	there
are	no	phases	remaining.	This	approach	is	especially	good	for	work	that	includes	blocking
I/O	or	subprocesses—activities	that	can	easily	be	parallelized	using	Python	(see	Item	37:
“Use	Threads	for	Blocking	I/O,	Avoid	for	Parallelism”).

For	example,	say	you	want	to	build	a	system	that	will	take	a	constant	stream	of	images
from	your	digital	camera,	resize	them,	and	then	add	them	to	a	photo	gallery	online.	Such	a
program	could	be	split	into	three	phases	of	a	pipeline.	New	images	are	retrieved	in	the	first
phase.	The	downloaded	images	are	passed	through	the	resize	function	in	the	second	phase.
The	resized	images	are	consumed	by	the	upload	function	in	the	final	phase.

Imagine	you	had	already	written	Python	functions	that	execute	the	phases:	download,
resize,	upload.	How	do	you	assemble	a	pipeline	to	do	the	work	concurrently?

The	first	thing	you	need	is	a	way	to	hand	off	work	between	the	pipeline	phases.	This	can
be	modeled	as	a	thread-safe	producer-consumer	queue	(see	Item	38:	“Use	Lock	to
Prevent	Data	Races	in	Threads”	to	understand	the	importance	of	thread	safety	in	Python;
see	Item	46:	“Use	Built-in	Algorithms	and	Data	Structures”	for	the	deque	class).

class	MyQueue(object):



				def	__init__(self):

								self.items	=	deque()

								self.lock	=	Lock()

The	producer,	your	digital	camera,	adds	new	images	to	the	end	of	the	list	of	pending
items.
Click	here	to	view	code	image

def	put(self,	item):

								with	self.lock:

												self.items.append(item)

The	consumer,	the	first	phase	of	your	processing	pipeline,	removes	images	from	the	front
of	the	list	of	pending	items.
Click	here	to	view	code	image

def	get(self):

								with	self.lock:

												return	self.items.popleft()

Here,	I	represent	each	phase	of	the	pipeline	as	a	Python	thread	that	takes	work	from	one
queue	like	this,	runs	a	function	on	it,	and	puts	the	result	on	another	queue.	I	also	track	how
many	times	the	worker	has	checked	for	new	input	and	how	much	work	it’s	completed.
Click	here	to	view	code	image

class	Worker(Thread):

				def	__init__(self,	func,	in_queue,	out_queue):

								super().__init__()

								self.func	=	func

								self.in_queue	=	in_queue

								self.out_queue	=	out_queue

								self.polled_count	=	0

								self.work_done	=	0

The	trickiest	part	is	that	the	worker	thread	must	properly	handle	the	case	where	the	input
queue	is	empty	because	the	previous	phase	hasn’t	completed	its	work	yet.	This	happens
where	I	catch	the	IndexError	exception	below.	You	can	think	of	this	as	a	holdup	in	the
assembly	line.
Click	here	to	view	code	image

def	run(self):

								while	True:

												self.polled_count	+=	1

												try:

																item	=	self.in_queue.get()

												except	IndexError:

																sleep(0.01)		#	No	work	to	do

												else:

																result	=	self.func(item)

																self.out_queue.put(result)

																self.work_done	+=	1

Now	I	can	connect	the	three	phases	together	by	creating	the	queues	for	their	coordination
points	and	the	corresponding	worker	threads.
Click	here	to	view	code	image

download_queue	=	MyQueue()

resize_queue	=	MyQueue()



upload_queue	=	MyQueue()

done_queue	=	MyQueue()

threads	=	[

				Worker(download,	download_queue,	resize_queue),

				Worker(resize,	resize_queue,	upload_queue),

				Worker(upload,	upload_queue,	done_queue),

]

I	can	start	the	threads	and	then	inject	a	bunch	of	work	into	the	first	phase	of	the	pipeline.
Here,	I	use	a	plain	object	instance	as	a	proxy	for	the	real	data	required	by	the
download	function:
Click	here	to	view	code	image

for	thread	in	threads:

				thread.start()

for	_	in	range(1000):

				download_queue.put(object())

Now	I	wait	for	all	of	the	items	to	be	processed	by	the	pipeline	and	end	up	in	the
done_queue.
Click	here	to	view	code	image

while	len(done_queue.items)	<	1000:

				#	Do	something	useful	while	waiting

				#	…

This	runs	properly,	but	there’s	an	interesting	side	effect	caused	by	the	threads	polling	their
input	queues	for	new	work.	The	tricky	part,	where	I	catch	IndexError	exceptions	in	the
run	method,	executes	a	large	number	of	times.
Click	here	to	view	code	image

processed	=	len(done_queue.items)

polled	=	sum(t.polled_count	for	t	in	threads)

print(‘Processed’,	processed,	‘items	after	polling’,

						polled,	‘times’)

>>>

Processed	1000	items	after	polling	3030	times

When	the	worker	functions	vary	in	speeds,	an	earlier	phase	can	prevent	progress	in	later
phases,	backing	up	the	pipeline.	This	causes	later	phases	to	starve	and	constantly	check
their	input	queues	for	new	work	in	a	tight	loop.	The	outcome	is	that	worker	threads	waste
CPU	time	doing	nothing	useful	(they’re	constantly	raising	and	catching	IndexError
exceptions).

But	that’s	just	the	beginning	of	what’s	wrong	with	this	implementation.	There	are	three
more	problems	that	you	should	also	avoid.	First,	determining	that	all	of	the	input	work	is
complete	requires	yet	another	busy	wait	on	the	done_queue.	Second,	in	Worker	the
run	method	will	execute	forever	in	its	busy	loop.	There’s	no	way	to	signal	to	a	worker
thread	that	it’s	time	to	exit.

Third,	and	worst	of	all,	a	backup	in	the	pipeline	can	cause	the	program	to	crash	arbitrarily.
If	the	first	phase	makes	rapid	progress	but	the	second	phase	makes	slow	progress,	then	the
queue	connecting	the	first	phase	to	the	second	phase	will	constantly	increase	in	size.	The
second	phase	won’t	be	able	to	keep	up.	Given	enough	time	and	input	data,	the	program



will	eventually	run	out	of	memory	and	die.

The	lesson	here	isn’t	that	pipelines	are	bad;	it’s	that	it’s	hard	to	build	a	good	producer-
consumer	queue	yourself.

Queue	to	the	Rescue
The	Queue	class	from	the	queue	built-in	module	provides	all	of	the	functionality	you
need	to	solve	these	problems.

Queue	eliminates	the	busy	waiting	in	the	worker	by	making	the	get	method	block	until
new	data	is	available.	For	example,	here	I	start	a	thread	that	waits	for	some	input	data	on	a
queue:
Click	here	to	view	code	image

from	queue	import	Queue

queue	=	Queue()

def	consumer():

				print(‘Consumer	waiting’)

				queue.get()																#	Runs	after	put()	below

				print(‘Consumer	done’)

thread	=	Thread(target=consumer)

thread.start()

Even	though	the	thread	is	running	first,	it	won’t	finish	until	an	item	is	put	on	the	Queue
instance	and	the	get	method	has	something	to	return.
Click	here	to	view	code	image

print(‘Producer	putting’)

queue.put(object())												#	Runs	before	get()	above

thread.join()

print(‘Producer	done’)

>>>

Consumer	waiting

Producer	putting

Consumer	done

Producer	done

To	solve	the	pipeline	backup	issue,	the	Queue	class	lets	you	specify	the	maximum
amount	of	pending	work	you’ll	allow	between	two	phases.	This	buffer	size	causes	calls	to
put	to	block	when	the	queue	is	already	full.	For	example,	here	I	define	a	thread	that	waits
for	a	while	before	consuming	a	queue:
Click	here	to	view	code	image

queue	=	Queue(1)															#	Buffer	size	of	1

def	consumer():

				time.sleep(0.1)												#	Wait

				queue.get()																#	Runs	second

				print(‘Consumer	got	1’)

				queue.get()																#	Runs	fourth

				print(‘Consumer	got	2’)

thread	=	Thread(target=consumer)



thread.start()

The	wait	should	allow	the	producer	thread	to	put	both	objects	on	the	queue	before	the
consume	thread	ever	calls	get.	But	the	Queue	size	is	one.	That	means	the	producer
adding	items	to	the	queue	will	have	to	wait	for	the	consumer	thread	to	call	get	at	least
once	before	the	second	call	to	put	will	stop	blocking	and	add	the	second	item	to	the
queue.
Click	here	to	view	code	image

queue.put(object())												#	Runs	first

print(‘Producer	put	1’)

queue.put(object())												#	Runs	third

print(‘Producer	put	2’)

thread.join()

print(‘Producer	done’)

>>>

Producer	put	1

Consumer	got	1

Producer	put	2

Consumer	got	2

Producer	done

The	Queue	class	can	also	track	the	progress	of	work	using	the	task_done	method.	This
lets	you	wait	for	a	phase’s	input	queue	to	drain	and	eliminates	the	need	for	polling	the
done_queue	at	the	end	of	your	pipeline.	For	example,	here	I	define	a	consumer	thread
that	calls	task_done	when	it	finishes	working	on	an	item.
Click	here	to	view	code	image

in_queue	=	Queue()

def	consumer():

				print(‘Consumer	waiting’)

				work	=	in_queue.get()						#	Done	second

				print(‘Consumer	working’)

				#	Doing	work

				#	…

				print(‘Consumer	done’)

				in_queue.task_done()							#	Done	third

Thread(target=consumer).start()

Now,	the	producer	code	doesn’t	have	to	join	the	consumer	thread	or	poll.	The	producer
can	just	wait	for	the	in_queue	to	finish	by	calling	join	on	the	Queue	instance.	Even
once	it’s	empty,	the	in_queue	won’t	be	joinable	until	after	task_done	is	called	for
every	item	that	was	ever	enqueued.
Click	here	to	view	code	image

in_queue.put(object())									#	Done	first

print(‘Producer	waiting’)

in_queue.join()																#	Done	fourth

print(‘Producer	done’)

>>>

Consumer	waiting

Producer	waiting



Consumer	working

Consumer	done

Producer	done

I	can	put	all	of	these	behaviors	together	into	a	Queue	subclass	that	also	tells	the	worker
thread	when	it	should	stop	processing.	Here,	I	define	a	close	method	that	adds	a	special
item	to	the	queue	that	indicates	there	will	be	no	more	input	items	after	it:
Click	here	to	view	code	image

class	ClosableQueue(Queue):

				SENTINEL	=	object()

				def	close(self):

								self.put(self.SENTINEL)

Then,	I	define	an	iterator	for	the	queue	that	looks	for	this	special	object	and	stops	iteration
when	it’s	found.	This	__iter__	method	also	calls	task_done	at	appropriate	times,
letting	me	track	the	progress	of	work	on	the	queue.
Click	here	to	view	code	image

def	__iter__(self):

								while	True:

												item	=	self.get()

												try:

																if	item	is	self.SENTINEL:

																				return		#	Cause	the	thread	to	exit

																yield	item

												finally:

																self.task_done()

Now,	I	can	redefine	my	worker	thread	to	rely	on	the	behavior	of	the	ClosableQueue
class.	The	thread	will	exit	once	the	for	loop	is	exhausted.
Click	here	to	view	code	image

class	StoppableWorker(Thread):

				def	__init__(self,	func,	in_queue,	out_queue):

								#	…

				def	run(self):

								for	item	in	self.in_queue:

												result	=	self.func(item)

												self.out_queue.put(result)

Here,	I	re-create	the	set	of	worker	threads	using	the	new	worker	class:
Click	here	to	view	code	image

download_queue	=	ClosableQueue()

#	…

threads	=	[

				StoppableWorker(download,	download_queue,	resize_queue),

				#	…

]

After	running	the	worker	threads	like	before,	I	also	send	the	stop	signal	once	all	the	input
work	has	been	injected	by	closing	the	input	queue	of	the	first	phase.
Click	here	to	view	code	image

for	thread	in	threads:



				thread.start()

for	_	in	range(1000):

				download_queue.put(object())

download_queue.close()

Finally,	I	wait	for	the	work	to	finish	by	joining	each	queue	that	connects	the	phases.	Each
time	one	phase	is	done,	I	signal	the	next	phase	to	stop	by	closing	its	input	queue.	At	the
end,	the	done_queue	contains	all	of	the	output	objects	as	expected.
Click	here	to	view	code	image

download_queue.join()

resize_queue.close()

resize_queue.join()

upload_queue.close()

upload_queue.join()

print(done_queue.qsize(),	‘items	finished’)

>>>

1000	items	finished

Things	to	Remember
	Pipelines	are	a	great	way	to	organize	sequences	of	work	that	run	concurrently	using
multiple	Python	threads.

	Be	aware	of	the	many	problems	in	building	concurrent	pipelines:	busy	waiting,
stopping	workers,	and	memory	explosion.

	The	Queue	class	has	all	of	the	facilities	you	need	to	build	robust	pipelines:	blocking
operations,	buffer	sizes,	and	joining.

Item	40:	Consider	Coroutines	to	Run	Many	Functions
Concurrently
Threads	give	Python	programmers	a	way	to	run	multiple	functions	seemingly	at	the	same
time	(see	Item	37:	“Use	Threads	for	Blocking	I/O,	Avoid	for	Parallelism”).	But	there	are
three	big	problems	with	threads:

	They	require	special	tools	to	coordinate	with	each	other	safely	(see	Item	38:	“Use
Lock	to	Prevent	Data	Races	in	Threads”	and	Item	39:	“Use	Queue	to	Coordinate
Work	Between	Threads”).	This	makes	code	that	uses	threads	harder	to	reason	about
than	procedural,	single-threaded	code.	This	complexity	makes	threaded	code	more
difficult	to	extend	and	maintain	over	time.

	Threads	require	a	lot	of	memory,	about	8	MB	per	executing	thread.	On	many
computers,	that	amount	of	memory	doesn’t	matter	for	a	dozen	threads	or	so.	But
what	if	you	want	your	program	to	run	tens	of	thousands	of	functions
“simultaneously”?	These	functions	may	correspond	to	user	requests	to	a	server,
pixels	on	a	screen,	particles	in	a	simulation,	etc.	Running	a	thread	per	unique	activity
just	won’t	work.

	Threads	are	costly	to	start.	If	you	want	to	constantly	be	creating	new	concurrent
functions	and	finishing	them,	the	overhead	of	using	threads	becomes	large	and	slows



everything	down.

Python	can	work	around	all	these	issues	with	coroutines.	Coroutines	let	you	have	many
seemingly	simultaneous	functions	in	your	Python	programs.	They’re	implemented	as	an
extension	to	generators	(see	Item	16:	“Consider	Generators	Instead	of	Returning	Lists”).
The	cost	of	starting	a	generator	coroutine	is	a	function	call.	Once	active,	they	each	use	less
than	1	KB	of	memory	until	they’re	exhausted.

Coroutines	work	by	enabling	the	code	consuming	a	generator	to	send	a	value	back	into
the	generator	function	after	each	yield	expression.	The	generator	function	receives	the
value	passed	to	the	send	function	as	the	result	of	the	corresponding	yield	expression.
Click	here	to	view	code	image

def	my_coroutine():

				while	True:

								received	=	yield

								print(‘Received:’,	received)

it	=	my_coroutine()

next(it)													#	Prime	the	coroutine

it.send(‘First’)

it.send(‘Second’)

>>>

Received:	First

Received:	Second

The	initial	call	to	next	is	required	to	prepare	the	generator	for	receiving	the	first	send
by	advancing	it	to	the	first	yield	expression.	Together,	yield	and	send	provide
generators	with	a	standard	way	to	vary	their	next	yielded	value	in	response	to	external
input.

For	example,	say	you	want	to	implement	a	generator	coroutine	that	yields	the	minimum
value	it’s	been	sent	so	far.	Here,	the	bare	yield	prepares	the	coroutine	with	the	initial
minimum	value	sent	in	from	the	outside.	Then	the	generator	repeatedly	yields	the	new
minimum	in	exchange	for	the	next	value	to	consider.
Click	here	to	view	code	image

def	minimize():

				current	=	yield

				while	True:

								value	=	yield	current

								current	=	min(value,	current)

The	code	consuming	the	generator	can	run	one	step	at	a	time	and	will	output	the	minimum
value	seen	after	each	input.
Click	here	to	view	code	image

it	=	minimize()

next(it)												#	Prime	the	generator

print(it.send(10))

print(it.send(4))

print(it.send(22))

print(it.send(-1))

>>>



10

4

4

-1

The	generator	function	will	seemingly	run	forever,	making	forward	progress	with	each
new	call	to	send.	Like	threads,	coroutines	are	independent	functions	that	can	consume
inputs	from	their	environment	and	produce	resulting	outputs.	The	difference	is	that
coroutines	pause	at	each	yield	expression	in	the	generator	function	and	resume	after
each	call	to	send	from	the	outside.	This	is	the	magical	mechanism	of	coroutines.

This	behavior	allows	the	code	consuming	the	generator	to	take	action	after	each	yield
expression	in	the	coroutine.	The	consuming	code	can	use	the	generator’s	output	values	to
call	other	functions	and	update	data	structures.	Most	importantly,	it	can	advance	other
generator	functions	until	their	next	yield	expressions.	By	advancing	many	separate
generators	in	lockstep,	they	will	all	seem	to	be	running	simultaneously,	mimicking	the
concurrent	behavior	of	Python	threads.

The	Game	of	Life
Let	me	demonstrate	the	simultaneous	behavior	of	coroutines	with	an	example.	Say	you
want	to	use	coroutines	to	implement	Conway’s	Game	of	Life.	The	rules	of	the	game	are
simple.	You	have	a	two-dimensional	grid	of	an	arbitrary	size.	Each	cell	in	the	grid	can
either	be	alive	or	empty.

ALIVE	=	‘*’

EMPTY	=	‘-‘

The	game	progresses	one	tick	of	the	clock	at	a	time.	At	each	tick,	each	cell	counts	how
many	of	its	neighboring	eight	cells	are	still	alive.	Based	on	its	neighbor	count,	each	cell
decides	if	it	will	keep	living,	die,	or	regenerate.	Here’s	an	example	of	a	5×5	Game	of	Life
grid	after	four	generations	with	time	going	to	the	right.	I’ll	explain	the	specific	rules
further	below.
Click	here	to	view	code	image

0			|			1			|			2			|			3			|			4

–—	|	–—	|	–—	|	–—	|	–—

-*–	|	—*—	|	—**-	|	—*—	|	–—

—**-	|	—**-	|	-*–	|	-*–	|	-**—

–*-	|	—**-	|	—**-	|	—*—	|	–—

–—	|	–—	|	–—	|	–—	|	–—

I	can	model	this	game	by	representing	each	cell	as	a	generator	coroutine	running	in
lockstep	with	all	the	others.

To	implement	this,	first	I	need	a	way	to	retrieve	the	status	of	neighboring	cells.	I	can	do
this	with	a	coroutine	named	count_neighbors	that	works	by	yielding	Query	objects.
The	Query	class	I	define	myself.	Its	purpose	is	to	provide	the	generator	coroutine	with	a
way	to	ask	its	surrounding	environment	for	information.
Click	here	to	view	code	image

Query	=	namedtuple(‘Query’,	(‘y’,	‘x’))

The	coroutine	yields	a	Query	for	each	neighbor.	The	result	of	each	yield	expression



will	be	the	value	ALIVE	or	EMPTY.	That’s	the	interface	contract	I’ve	defined	between	the
coroutine	and	its	consuming	code.	The	count_neighbors	generator	sees	the
neighbors’	states	and	returns	the	count	of	living	neighbors.
Click	here	to	view	code	image

def	count_neighbors(y,	x):

				n_	=	yield	Query(y	+	1,	x	+	0)		#	North

				ne	=	yield	Query(y	+	1,	x	+	1)		#	Northeast

				#	Define	e_,	se,	s_,	sw,	w_,	nw	…

				#	…

				neighbor_states	=	[n_,	ne,	e_,	se,	s_,	sw,	w_,	nw]

				count	=	0

				for	state	in	neighbor_states:

								if	state	==	ALIVE:

												count	+=	1

				return	count

I	can	drive	the	count_neighbors	coroutine	with	fake	data	to	test	it.	Here,	I	show	how
Query	objects	will	be	yielded	for	each	neighbor.	count_neighbors	expects	to
receive	cell	states	corresponding	to	each	Query	through	the	coroutine’s	send	method.
The	final	count	is	returned	in	the	StopIteration	exception	that	is	raised	when	the
generator	is	exhausted	by	the	return	statement.
Click	here	to	view	code	image

it	=	count_neighbors(10,	5)

q1	=	next(it)																		#	Get	the	first	query

print(‘First	yield:	‘,	q1)

q2	=	it.send(ALIVE)												#	Send	q1	state,	get	q2

print(‘Second	yield:’,	q2)

q3	=	it.send(ALIVE)												#	Send	q2	state,	get	q3

#	…

try:

				count	=	it.send(EMPTY)					#	Send	q8	state,	retrieve	count

except	StopIteration	as	e:

				print(‘Count:	‘,	e.value)		#	Value	from	return	statement

>>>

First	yield:		Query(y=11,	x=5)

Second	yield:	Query(y=11,	x=6)

…

Count:		2

Now	I	need	the	ability	to	indicate	that	a	cell	will	transition	to	a	new	state	in	response	to	the
neighbor	count	that	it	found	from	count_neighbors.	To	do	this,	I	define	another
coroutine	called	step_cell.	This	generator	will	indicate	transitions	in	a	cell’s	state	by
yielding	Transition	objects.	This	is	another	class	that	I	define,	just	like	the	Query
class.
Click	here	to	view	code	image

Transition	=	namedtuple(‘Transition’,	(‘y’,	‘x’,	‘state’))

The	step_cell	coroutine	receives	its	coordinates	in	the	grid	as	arguments.	It	yields	a
Query	to	get	the	initial	state	of	those	coordinates.	It	runs	count_neighbors	to
inspect	the	cells	around	it.	It	runs	the	game	logic	to	determine	what	state	the	cell	should
have	for	the	next	clock	tick.	Finally,	it	yields	a	Transition	object	to	tell	the
environment	the	cell’s	next	state.



Click	here	to	view	code	image

def	game_logic(state,	neighbors):

				#	…

def	step_cell(y,	x):

				state	=	yield	Query(y,	x)

				neighbors	=	yield	from	count_neighbors(y,	x)

				next_state	=	game_logic(state,	neighbors)

				yield	Transition(y,	x,	next_state)

Importantly,	the	call	to	count_neighbors	uses	the	yield	from	expression.	This
expression	allows	Python	to	compose	generator	coroutines	together,	making	it	easy	to
reuse	smaller	pieces	of	functionality	and	build	complex	coroutines	from	simpler	ones.
When	count_neighbors	is	exhausted,	the	final	value	it	returns	(with	the	return
statement)	will	be	passed	to	step_cell	as	the	result	of	the	yield	from	expression.

Now,	I	can	finally	define	the	simple	game	logic	for	Conway’s	Game	of	Life.	There	are
only	three	rules.
Click	here	to	view	code	image

def	game_logic(state,	neighbors):

				if	state	==	ALIVE:

								if	neighbors	<	2:

												return	EMPTY					#	Die:	Too	few

								elif	neighbors	>	3:

												return	EMPTY					#	Die:	Too	many

				else:

								if	neighbors	==	3:

												return	ALIVE					#	Regenerate

				return	state

I	can	drive	the	step_cell	coroutine	with	fake	data	to	test	it.
Click	here	to	view	code	image

it	=	step_cell(10,	5)

q0	=	next(it)											#	Initial	location	query

print(‘Me:						’,	q0)

q1	=	it.send(ALIVE)					#	Send	my	status,	get	neighbor	query

print(‘Q1:						’,	q1)

#	…

t1	=	it.send(EMPTY)					#	Send	for	q8,	get	game	decision

print(‘Outcome:	‘,	t1)

>>>

Me:							Query(y=10,	x=5)

Q1:							Query(y=11,	x=5)

…

Outcome:		Transition(y=10,	x=5,	state=’-‘)

The	goal	of	the	game	is	to	run	this	logic	for	a	whole	grid	of	cells	in	lockstep.	To	do	this,	I
can	further	compose	the	step_cell	coroutine	into	a	simulate	coroutine.	This
coroutine	progresses	the	grid	of	cells	forward	by	yielding	from	step_cell	many	times.
After	progressing	every	coordinate,	it	yields	a	TICK	object	to	indicate	that	the	current
generation	of	cells	have	all	transitioned.
Click	here	to	view	code	image



TICK	=	object()

def	simulate(height,	width):

				while	True:

								for	y	in	range(height):

												for	x	in	range(width):

																yield	from	step_cell(y,	x)

								yield	TICK

What’s	impressive	about	simulate	is	that	it’s	completely	disconnected	from	the
surrounding	environment.	I	still	haven’t	defined	how	the	grid	is	represented	in	Python
objects,	how	Query,	Transition,	and	TICK	values	are	handled	on	the	outside,	nor
how	the	game	gets	its	initial	state.	But	the	logic	is	clear.	Each	cell	will	transition	by
running	step_cell.	Then	the	game	clock	will	tick.	This	will	continue	forever,	as	long
as	the	simulate	coroutine	is	advanced.

This	is	the	beauty	of	coroutines.	They	help	you	focus	on	the	logic	of	what	you’re	trying	to
accomplish.	They	decouple	your	code’s	instructions	for	the	environment	from	the
implementation	that	carries	out	your	wishes.	This	enables	you	to	run	coroutines	seemingly
in	parallel.	This	also	allows	you	to	improve	the	implementation	of	following	those
instructions	over	time	without	changing	the	coroutines.

Now,	I	want	to	run	simulate	in	a	real	environment.	To	do	that,	I	need	to	represent	the
state	of	each	cell	in	the	grid.	Here,	I	define	a	class	to	contain	the	grid:
Click	here	to	view	code	image

class	Grid(object):

				def	__init__(self,	height,	width):

								self.height	=	height

								self.width	=	width

								self.rows	=	[]

								for	_	in	range(self.height):

												self.rows.append([EMPTY]	*	self.width)

				def	__str__(self):

								#	…

The	grid	allows	you	to	get	and	set	the	value	of	any	coordinate.	Coordinates	that	are	out	of
bounds	will	wrap	around,	making	the	grid	act	like	infinite	looping	space.
Click	here	to	view	code	image

def	query(self,	y,	x):

								return	self.rows[y	%	self.height][x	%	self.width]

				def	assign(self,	y,	x,	state):

								self.rows[y	%	self.height][x	%	self.width]	=	state

At	last,	I	can	define	the	function	that	interprets	the	values	yielded	from	simulate	and	all
of	its	interior	coroutines.	This	function	turns	the	instructions	from	the	coroutines	into
interactions	with	the	surrounding	environment.	It	progresses	the	whole	grid	of	cells
forward	a	single	step	and	then	returns	a	new	grid	containing	the	next	state.
Click	here	to	view	code	image

def	live_a_generation(grid,	sim):

				progeny	=	Grid(grid.height,	grid.width)

				item	=	next(sim)



				while	item	is	not	TICK:

								if	isinstance(item,	Query):

												state	=	grid.query(item.y,	item.x)

												item	=	sim.send(state)

								else:		#	Must	be	a	Transition

												progeny.assign(item.y,	item.x,	item.state)

												item	=	next(sim)

				return	progeny

To	see	this	function	in	action,	I	need	to	create	a	grid	and	set	its	initial	state.	Here,	I	make	a
classic	shape	called	a	glider.

grid	=	Grid(5,	9)

grid.assign(0,	3,	ALIVE)

#	…

print(grid)

>>>

–*–—

–-*–-

—***–-

–––

–––

Now	I	can	progress	this	grid	forward	one	generation	at	a	time.	You	can	see	how	the	glider
moves	down	and	to	the	right	on	the	grid	based	on	the	simple	rules	from	the	game_logic
function.
Click	here	to	view	code	image

class	ColumnPrinter(object):

				#	…

columns	=	ColumnPrinter()

sim	=	simulate(grid.height,	grid.width)

for	i	in	range(5):

				columns.append(str(grid))

				grid	=	live_a_generation(grid,	sim)

print(columns)

>>>

				0					|					1					|					2					|					3					|					4

–*–—	|	–––	|	–––	|	–––	|	–––

–-*–-	|	—*-*–-	|	–-*–-	|	–*–—	|	–-*–-

—***–-	|	–**–-	|	—*-*–-	|	–-**–	|	–—*–

–––	|	–*–—	|	–**–-	|	–**–-	|	–***–

–––	|	–––	|	–––	|	–––	|	–––

The	best	part	about	this	approach	is	that	I	can	change	the	game_logic	function	without
having	to	update	the	code	that	surrounds	it.	I	can	change	the	rules	or	add	larger	spheres	of
influence	with	the	existing	mechanics	of	Query,	Transition,	and	TICK.	This
demonstrates	how	coroutines	enable	the	separation	of	concerns,	which	is	an	important
design	principle.



Coroutines	in	Python	2
Unfortunately,	Python	2	is	missing	some	of	the	syntactical	sugar	that	makes	coroutines	so
elegant	in	Python	3.	There	are	two	limitations.	First,	there	is	no	yield	from	expression.
That	means	that	when	you	want	to	compose	generator	coroutines	in	Python	2,	you	need	to
include	an	additional	loop	at	the	delegation	point.
Click	here	to	view	code	image

#	Python	2

def	delegated():

				yield	1

				yield	2

def	composed():

				yield	‘A’

				for	value	in	delegated():		#	yield	from	in	Python	3

								yield	value

				yield	‘B’

print	list(composed())

>>>

[‘A’,	1,	2,	‘B’]

The	second	limitation	is	that	there	is	no	support	for	the	return	statement	in	Python	2
generators.	To	get	the	same	behavior	that	interacts	correctly	with	try/except/finally
blocks,	you	need	to	define	your	own	exception	type	and	raise	it	when	you	want	to	return	a
value.
Click	here	to	view	code	image

#	Python	2

class	MyReturn(Exception):

				def	__init__(self,	value):

								self.value	=	value

def	delegated():

				yield	1

				raise	MyReturn(2)		#	return	2	in	Python	3

				yield	‘Not	reached’

def	composed():

				try:

								for	value	in	delegated():

												yield	value

				except	MyReturn	as	e:

								output	=	e.value

				yield	output	*	4

print	list(composed())

>>>

[1,	8]



Things	to	Remember
	Coroutines	provide	an	efficient	way	to	run	tens	of	thousands	of	functions	seemingly
at	the	same	time.

	Within	a	generator,	the	value	of	the	yield	expression	will	be	whatever	value	was
passed	to	the	generator’s	send	method	from	the	exterior	code.

	Coroutines	give	you	a	powerful	tool	for	separating	the	core	logic	of	your	program
from	its	interaction	with	the	surrounding	environment.

	Python	2	doesn’t	support	yield	from	or	returning	values	from	generators.

Item	41:	Consider	concurrent.futures	for	True
Parallelism
At	some	point	in	writing	Python	programs,	you	may	hit	the	performance	wall.	Even	after
optimizing	your	code	(see	Item	58:	“Profile	Before	Optimizing”),	your	program’s
execution	may	still	be	too	slow	for	your	needs.	On	modern	computers	that	have	an
increasing	number	of	CPU	cores,	it’s	reasonable	to	assume	that	one	solution	would	be
parallelism.	What	if	you	could	split	your	code’s	computation	into	independent	pieces	of
work	that	run	simultaneously	across	multiple	CPU	cores?

Unfortunately,	Python’s	global	interpreter	lock	(GIL)	prevents	true	parallelism	in	threads
(see	Item	37:	“Use	Threads	for	Blocking	I/O,	Avoid	for	Parallelism”),	so	that	option	is	out.
Another	common	suggestion	is	to	rewrite	your	most	performance-critical	code	as	an
extension	module	using	the	C	language.	C	gets	you	closer	to	the	bare	metal	and	can	run
faster	than	Python,	eliminating	the	need	for	parallelism.	C-extensions	can	also	start	native
threads	that	run	in	parallel	and	utilize	multiple	CPU	cores.	Python’s	API	for	C-extensions
is	well	documented	and	a	good	choice	for	an	escape	hatch.

But	rewriting	your	code	in	C	has	a	high	cost.	Code	that	is	short	and	understandable	in
Python	can	become	verbose	and	complicated	in	C.	Such	a	port	requires	extensive	testing
to	ensure	that	the	functionality	is	equivalent	to	the	original	Python	code	and	that	no	bugs
have	been	introduced.	Sometimes	it’s	worth	it,	which	explains	the	large	ecosystem	of	C-
extension	modules	in	the	Python	community	that	speed	up	things	like	text	parsing,	image
compositing,	and	matrix	math.	There	are	even	open	source	tools	such	as	Cython
(http://cython.org/)	and	Numba	(http://numba.pydata.org/)	that	can	ease	the	transition	to	C.

The	problem	is	that	moving	one	piece	of	your	program	to	C	isn’t	sufficient	most	of	the
time.	Optimized	Python	programs	usually	don’t	have	one	major	source	of	slowness,	but
rather,	there	are	often	many	significant	contributors.	To	get	the	benefits	of	C’s	bare	metal
and	threads,	you’d	need	to	port	large	parts	of	your	program,	drastically	increasing	testing
needs	and	risk.	There	must	be	a	better	way	to	preserve	your	investment	in	Python	to	solve
difficult	computational	problems.

The	multiprocessing	built-in	module,	easily	accessed	via	the
concurrent.futures	built-in	module,	may	be	exactly	what	you	need.	It	enables
Python	to	utilize	multiple	CPU	cores	in	parallel	by	running	additional	interpreters	as	child
processes.	These	child	processes	are	separate	from	the	main	interpreter,	so	their	global

http://cython.org/
http://numba.pydata.org/


interpreter	locks	are	also	separate.	Each	child	can	fully	utilize	one	CPU	core.	Each	child
has	a	link	to	the	main	process	where	it	receives	instructions	to	do	computation	and	returns
results.

For	example,	say	you	want	to	do	something	computationally	intensive	with	Python	and
utilize	multiple	CPU	cores.	I’ll	use	an	implementation	of	finding	the	greatest	common
divisor	of	two	numbers	as	a	proxy	for	a	more	computationally	intense	algorithm,	like
simulating	fluid	dynamics	with	the	Navier-Stokes	equation.
Click	here	to	view	code	image

def	gcd(pair):

				a,	b	=	pair

				low	=	min(a,	b)

				for	i	in	range(low,	0,	-1):

								if	a	%	i	==	0	and	b	%	i	==	0:

												return	i

Running	this	function	in	serial	takes	a	linearly	increasing	amount	of	time	because	there	is
no	parallelism.
Click	here	to	view	code	image

numbers	=	[(1963309,	2265973),	(2030677,	3814172),

											(1551645,	2229620),	(2039045,	2020802)]

start	=	time()

results	=	list(map(gcd,	numbers))

end	=	time()

print(‘Took	%.3f	seconds’	%	(end	-	start))

>>>

Took	1.170	seconds

Running	this	code	on	multiple	Python	threads	will	yield	no	speed	improvement	because
the	GIL	prevents	Python	from	using	multiple	CPU	cores	in	parallel.	Here,	I	do	the	same
computation	as	above	using	the	concurrent.futures	module	with	its
ThreadPoolExecutor	class	and	two	worker	threads	(to	match	the	number	of	CPU
cores	on	my	computer):
Click	here	to	view	code	image

start	=	time()

pool	=	ThreadPoolExecutor(max_workers=2)

results	=	list(pool.map(gcd,	numbers))

end	=	time()

print(‘Took	%.3f	seconds’	%	(end	-	start))

>>>

Took	1.199	seconds

It’s	even	slower	this	time	because	of	the	overhead	of	starting	and	communicating	with	the
pool	of	threads.

Now	for	the	surprising	part:	By	changing	a	single	line	of	code,	something	magical
happens.	If	I	replace	the	ThreadPoolExecutor	with	the	ProcessPoolExecutor
from	the	concurrent.futures	module,	everything	speeds	up.
Click	here	to	view	code	image

start	=	time()



pool	=	ProcessPoolExecutor(max_workers=2)		#	The	one	change

results	=	list(pool.map(gcd,	numbers))

end	=	time()

print(‘Took	%.3f	seconds’	%	(end	-	start))

>>>

Took	0.663	seconds

Running	on	my	dual-core	machine,	it’s	significantly	faster!	How	is	this	possible?	Here’s
what	the	ProcessPoolExecutor	class	actually	does	(via	the	low-level	constructs
provided	by	the	multiprocessing	module):

1.	It	takes	each	item	from	the	numbers	input	data	to	map.

2.	It	serializes	it	into	binary	data	using	the	pickle	module	(see	Item	44:	“Make
pickle	Reliable	with	copyreg”).

3.	It	copies	the	serialized	data	from	the	main	interpreter	process	to	a	child	interpreter
process	over	a	local	socket.

4.	Next,	it	deserializes	the	data	back	into	Python	objects	using	pickle	in	the	child
process.

5.	It	then	imports	the	Python	module	containing	the	gcd	function.

6.	It	runs	the	function	on	the	input	data	in	parallel	with	other	child	processes.

7.	It	serializes	the	result	back	into	bytes.

8.	It	copies	those	bytes	back	through	the	socket.

9.	It	deserializes	the	bytes	back	into	Python	objects	in	the	parent	process.

10.	Finally,	it	merges	the	results	from	multiple	children	into	a	single	list	to	return.

Although	it	looks	simple	to	the	programmer,	the	multiprocessing	module	and
ProcessPoolExecutor	class	do	a	huge	amount	of	work	to	make	parallelism	possible.
In	most	other	languages,	the	only	touch	point	you	need	to	coordinate	two	threads	is	a
single	lock	or	atomic	operation.	The	overhead	of	using	multiprocessing	is	high
because	of	all	of	the	serialization	and	deserialization	that	must	happen	between	the	parent
and	child	processes.

This	scheme	is	well	suited	to	certain	types	of	isolated,	high-leverage	tasks.	By	isolated,	I
mean	functions	that	don’t	need	to	share	state	with	other	parts	of	the	program.	By	high-
leverage,	I	mean	situations	in	which	only	a	small	amount	of	data	must	be	transferred
between	the	parent	and	child	processes	to	enable	a	large	amount	of	computation.	The
greatest	common	denominator	algorithm	is	one	example	of	this,	but	many	other
mathematical	algorithms	work	similarly.

If	your	computation	doesn’t	have	these	characteristics,	then	the	overhead	of
multiprocessing	may	prevent	it	from	speeding	up	your	program	through
parallelization.	When	that	happens,	multiprocessing	provides	more	advanced
facilities	for	shared	memory,	cross-process	locks,	queues,	and	proxies.	But	all	of	these
features	are	very	complex.	It’s	hard	enough	to	reason	about	such	tools	in	the	memory
space	of	a	single	process	shared	between	Python	threads.	Extending	that	complexity	to



other	processes	and	involving	sockets	makes	this	much	more	difficult	to	understand.

I	suggest	avoiding	all	parts	of	multiprocessing	and	using	these	features	via	the
simpler	concurrent.futures	module.	You	can	start	by	using	the
ThreadPoolExecutor	class	to	run	isolated,	high-leverage	functions	in	threads.	Later,
you	can	move	to	the	ProcessPoolExecutor	to	get	a	speedup.	Finally,	once	you’ve
completely	exhausted	the	other	options,	you	can	consider	using	the	multiprocessing
module	directly.

Things	to	Remember
	Moving	CPU	bottlenecks	to	C-extension	modules	can	be	an	effective	way	to
improve	performance	while	maximizing	your	investment	in	Python	code.	However,
the	cost	of	doing	so	is	high	and	may	introduce	bugs.

	The	multiprocessing	module	provides	powerful	tools	that	can	parallelize
certain	types	of	Python	computation	with	minimal	effort.

	The	power	of	multiprocessing	is	best	accessed	through	the
concurrent.futures	built-in	module	and	its	simple
ProcessPoolExecutor	class.

	The	advanced	parts	of	the	multiprocessing	module	should	be	avoided	because
they	are	so	complex.



6.	Built-in	Modules

Python	takes	a	“batteries	included”	approach	to	the	standard	library.	Many	other	languages
ship	with	a	small	number	of	common	packages	and	require	you	to	look	elsewhere	for
important	functionality.	Although	Python	also	has	an	impressive	repository	of	community-
built	modules,	it	strives	to	provide,	in	its	default	installation,	the	most	important	modules
for	common	uses	of	the	language.

The	full	set	of	standard	modules	is	too	large	to	cover	in	this	book.	But	some	of	these	built-
in	packages	are	so	closely	intertwined	with	idiomatic	Python	that	they	may	as	well	be	part
of	the	language	specification.	These	essential	built-in	modules	are	especially	important
when	writing	the	intricate,	error-prone	parts	of	programs.

Item	42:	Define	Function	Decorators	with
functools.wraps

Python	has	special	syntax	for	decorators	that	can	be	applied	to	functions.	Decorators	have
the	ability	to	run	additional	code	before	and	after	any	calls	to	the	functions	they	wrap.	This
allows	them	to	access	and	modify	input	arguments	and	return	values.	This	functionality
can	be	useful	for	enforcing	semantics,	debugging,	registering	functions,	and	more.

For	example,	say	you	want	to	print	the	arguments	and	return	value	of	a	function	call.	This
is	especially	helpful	when	debugging	a	stack	of	function	calls	from	a	recursive	function.
Here,	I	define	such	a	decorator:
Click	here	to	view	code	image

def	trace(func):

				def	wrapper(*args,	**kwargs):

								result	=	func(*args,	**kwargs)

								print(‘%s(%r,	%r)	->	%r’	%

														(func.__name__,	args,	kwargs,	result))

								return	result

				return	wrapper

I	can	apply	this	to	a	function	using	the	@	symbol.
Click	here	to	view	code	image

@trace

def	fibonacci(n):

				“““Return	the	n-th	Fibonacci	number”””

				if	n	in	(0,	1):

								return	n

				return	(fibonacci(n	-	2)	+	fibonacci(n	-	1))

The	@	symbol	is	equivalent	to	calling	the	decorator	on	the	function	it	wraps	and	assigning
the	return	value	to	the	original	name	in	the	same	scope.

fibonacci	=	trace(fibonacci)

Calling	this	decorated	function	will	run	the	wrapper	code	before	and	after	fibonacci
runs,	printing	the	arguments	and	return	value	at	each	level	in	the	recursive	stack.

fibonacci(3)



>>>

fibonacci((1,),	{})	->	1

fibonacci((0,),	{})	->	0

fibonacci((1,),	{})	->	1

fibonacci((2,),	{})	->	1

fibonacci((3,),	{})	->	2

This	works	well,	but	it	has	an	unintended	side	effect.	The	value	returned	by	the	decorator
—the	function	that’s	called	above—doesn’t	think	it’s	named	fibonacci.
Click	here	to	view	code	image

print(fibonacci)

>>>

<function	trace.<locals>.wrapper	at	0x107f7ed08>

The	cause	of	this	isn’t	hard	to	see.	The	trace	function	returns	the	wrapper	it	defines.
The	wrapper	function	is	what’s	assigned	to	the	fibonacci	name	in	the	containing
module	because	of	the	decorator.	This	behavior	is	problematic	because	it	undermines	tools
that	do	introspection,	such	as	debuggers	(see	Item	57:	“Consider	Interactive	Debugging
with	pdb”)	and	object	serializers	(see	Item	44:	“Make	pickle	Reliable	with
copyreg”).

For	example,	the	help	built-in	function	is	useless	on	the	decorated	fibonacci
function.
Click	here	to	view	code	image

help(fibonacci)

>>>

Help	on	function	wrapper	in	module	__main__:

wrapper(*args,	**kwargs)

The	solution	is	to	use	the	wraps	helper	function	from	the	functools	built-in	module.
This	is	a	decorator	that	helps	you	write	decorators.	Applying	it	to	the	wrapper	function
will	copy	all	of	the	important	metadata	about	the	inner	function	to	the	outer	function.
Click	here	to	view	code	image

def	trace(func):

				@wraps(func)

				def	wrapper(*args,	**kwargs):

								#	…

				return	wrapper

@trace

def	fibonacci(n):

				#	…

Now,	running	the	help	function	produces	the	expected	result,	even	though	the	function	is
decorated.
Click	here	to	view	code	image

help(fibonacci)

>>>

Help	on	function	fibonacci	in	module	__main__:

fibonacci(n)



				Return	the	n-th	Fibonacci	number

Calling	help	is	just	one	example	of	how	decorators	can	subtly	cause	problems.	Python
functions	have	many	other	standard	attributes	(e.g.,	__name__,	__module__)	that	must
be	preserved	to	maintain	the	interface	of	functions	in	the	language.	Using	wraps	ensures
that	you’ll	always	get	the	correct	behavior.

Things	to	Remember
	Decorators	are	Python	syntax	for	allowing	one	function	to	modify	another	function
at	runtime.

	Using	decorators	can	cause	strange	behaviors	in	tools	that	do	introspection,	such	as
debuggers.

	Use	the	wraps	decorator	from	the	functools	built-in	module	when	you	define
your	own	decorators	to	avoid	any	issues.

Item	43:	Consider	contextlib	and	with	Statements	for
Reusable	try/finally	Behavior
The	with	statement	in	Python	is	used	to	indicate	when	code	is	running	in	a	special
context.	For	example,	mutual	exclusion	locks	(see	Item	38:	“Use	Lock	to	Prevent	Data
Races	in	Threads”)	can	be	used	in	with	statements	to	indicate	that	the	indented	code	only
runs	while	the	lock	is	held.

lock	=	Lock()

with	lock:

				print(‘Lock	is	held’)

The	example	above	is	equivalent	to	this	try/finally	construction	because	the	Lock
class	properly	enables	the	with	statement.

lock.acquire()

try:

				print(‘Lock	is	held’)

finally:

				lock.release()

The	with	statement	version	of	this	is	better	because	it	eliminates	the	need	to	write	the
repetitive	code	of	the	try/finally	construction.	It’s	easy	to	make	your	objects	and
functions	capable	of	use	in	with	statements	by	using	the	contextlib	built-in	module.
This	module	contains	the	contextmanager	decorator,	which	lets	a	simple	function	be
used	in	with	statements.	This	is	much	easier	than	defining	a	new	class	with	the	special
methods	__enter__	and	__exit__	(the	standard	way).

For	example,	say	you	want	a	region	of	your	code	to	have	more	debug	logging	sometimes.
Here,	I	define	a	function	that	does	logging	at	two	severity	levels:
Click	here	to	view	code	image

def	my_function():

				logging.debug(‘Some	debug	data’)

				logging.error(‘Error	log	here’)



				logging.debug(‘More	debug	data’)

The	default	log	level	for	my	program	is	WARNING,	so	only	the	error	message	will	print	to
screen	when	I	run	the	function.

my_function()

>>>

Error	log	here

I	can	elevate	the	log	level	of	this	function	temporarily	by	defining	a	context	manager.	This
helper	function	boosts	the	logging	severity	level	before	running	the	code	in	the	with
block	and	reduces	the	logging	severity	level	afterward.
Click	here	to	view	code	image

@contextmanager

def	debug_logging(level):

				logger	=	logging.getLogger()

				old_level	=	logger.getEffectiveLevel()

				logger.setLevel(level)

				try:

								yield

				finally:

								logger.setLevel(old_level)

The	yield	expression	is	the	point	at	which	the	with	block’s	contents	will	execute.	Any
exceptions	that	happen	in	the	with	block	will	be	re-raised	by	the	yield	expression	for
you	to	catch	in	the	helper	function	(see	Item	40:	“Consider	Coroutines	to	Run	Many
Functions	Concurrently”	for	an	explanation	of	how	that	works).

Now,	I	can	call	the	same	logging	function	again,	but	in	the	debug_logging	context.
This	time,	all	of	the	debug	messages	are	printed	to	the	screen	during	the	with	block.	The
same	function	running	outside	the	with	block	won’t	print	debug	messages.
Click	here	to	view	code	image

with	debug_logging(logging.DEBUG):

				print(‘Inside:’)

				my_function()

print(‘After:’)

my_function()

>>>

Inside:

Some	debug	data

Error	log	here

More	debug	data

After:

Error	log	here

Using	with	Targets
The	context	manager	passed	to	a	with	statement	may	also	return	an	object.	This	object	is
assigned	to	a	local	variable	in	the	as	part	of	the	compound	statement.	This	gives	the	code
running	in	the	with	block	the	ability	to	directly	interact	with	its	context.

For	example,	say	you	want	to	write	a	file	and	ensure	that	it’s	always	closed	correctly.	You
can	do	this	by	passing	open	to	the	with	statement.	open	returns	a	file	handle	for	the	as



target	of	with	and	will	close	the	handle	when	the	with	block	exits.
Click	here	to	view	code	image

with	open(‘/tmp/my_output.txt’,	‘w’)	as	handle:

				handle.write(‘This	is	some	data!’)

This	approach	is	preferable	to	manually	opening	and	closing	the	file	handle	every	time.	It
gives	you	confidence	that	the	file	is	eventually	closed	when	execution	leaves	the	with
statement.	It	also	encourages	you	to	reduce	the	amount	of	code	that	executes	while	the	file
handle	is	open,	which	is	good	practice	in	general.

To	enable	your	own	functions	to	supply	values	for	as	targets,	all	you	need	to	do	is	yield
a	value	from	your	context	manager.	For	example,	here	I	define	a	context	manager	to	fetch
a	Logger	instance,	set	its	level,	and	then	yield	it	for	the	as	target.
Click	here	to	view	code	image

@contextmanager

def	log_level(level,	name):

				logger	=	logging.getLogger(name)

				old_level	=	logger.getEffectiveLevel()

				logger.setLevel(level)

				try:

								yield	logger

				finally:

								logger.setLevel(old_level)

Calling	logging	methods	like	debug	on	the	as	target	will	produce	output	because	the
logging	severity	level	is	set	low	enough	in	the	with	block.	Using	the	logging	module
directly	won’t	print	anything	because	the	default	logging	severity	level	for	the	default
program	logger	is	WARNING.
Click	here	to	view	code	image

with	log_level(logging.DEBUG,	‘my-log’)	as	logger:

				logger.debug(‘This	is	my	message!’)

				logging.debug(‘This	will	not	print’)

>>>

This	is	my	message!

After	the	with	statement	exits,	calling	debug	logging	methods	on	the	Logger	named
'my-log'	will	not	print	anything	because	the	default	logging	severity	level	has	been
restored.	Error	log	messages	will	always	print.
Click	here	to	view	code	image

logger	=	logging.getLogger(‘my-log’)

logger.debug(‘Debug	will	not	print’)

logger.error(‘Error	will	print’)

>>>

Error	will	print

Things	to	Remember
	The	with	statement	allows	you	to	reuse	logic	from	try/finally	blocks	and
reduce	visual	noise.



	The	contextlib	built-in	module	provides	a	contextmanager	decorator	that
makes	it	easy	to	use	your	own	functions	in	with	statements.

	The	value	yielded	by	context	managers	is	supplied	to	the	as	part	of	the	with
statement.	It’s	useful	for	letting	your	code	directly	access	the	cause	of	the	special
context.

Item	44:	Make	pickle	Reliable	with	copyreg
The	pickle	built-in	module	can	serialize	Python	objects	into	a	stream	of	bytes	and
deserialize	bytes	back	into	objects.	Pickled	byte	streams	shouldn’t	be	used	to
communicate	between	untrusted	parties.	The	purpose	of	pickle	is	to	let	you	pass	Python
objects	between	programs	that	you	control	over	binary	channels.

Note

The	pickle	module’s	serialization	format	is	unsafe	by	design.	The	serialized	data
contains	what	is	essentially	a	program	that	describes	how	to	reconstruct	the	original
Python	object.	This	means	a	malicious	pickle	payload	could	be	used	to
compromise	any	part	of	the	Python	program	that	attempts	to	deserialize	it.

In	contrast,	the	json	module	is	safe	by	design.	Serialized	JSON	data	contains	a
simple	description	of	an	object	hierarchy.	Deserializing	JSON	data	does	not	expose
a	Python	program	to	any	additional	risk.	Formats	like	JSON	should	be	used	for
communication	between	programs	or	people	that	don’t	trust	each	other.

For	example,	say	you	want	to	use	a	Python	object	to	represent	the	state	of	a	player’s
progress	in	a	game.	The	game	state	includes	the	level	the	player	is	on	and	the	number	of
lives	he	or	she	has	remaining.

class	GameState(object):

				def	__init__(self):

								self.level	=	0

								self.lives	=	4

The	program	modifies	this	object	as	the	game	runs.
Click	here	to	view	code	image

state	=	GameState()

state.level	+=	1		#	Player	beat	a	level

state.lives	-=	1		#	Player	had	to	try	again

When	the	user	quits	playing,	the	program	can	save	the	state	of	the	game	to	a	file	so	it	can
be	resumed	at	a	later	time.	The	pickle	module	makes	it	easy	to	do	this.	Here,	I	dump
the	GameState	object	directly	to	a	file:
Click	here	to	view	code	image

state_path	=	‘/tmp/game_state.bin’

with	open(state_path,	‘wb’)	as	f:

				pickle.dump(state,	f)

Later,	I	can	load	the	file	and	get	back	the	GameState	object	as	if	it	had	never	been
serialized.



Click	here	to	view	code	image

with	open(state_path,	‘rb’)	as	f:

				state_after	=	pickle.load(f)

print(state_after.__dict__)

>>>

{‘lives’:	3,	‘level’:	1}

The	problem	with	this	approach	is	what	happens	as	the	game’s	features	expand	over	time.
Imagine	you	want	the	player	to	earn	points	towards	a	high	score.	To	track	the	player’s
points,	you’d	add	a	new	field	to	the	GameState	class.

class	GameState(object):

				def	__init__(self):

								#	…

								self.points	=	0

Serializing	the	new	version	of	the	GameState	class	using	pickle	will	work	exactly	as
before.	Here,	I	simulate	the	round-trip	through	a	file	by	serializing	to	a	string	with	dumps
and	back	to	an	object	with	loads:
Click	here	to	view	code	image

state	=	GameState()

serialized	=	pickle.dumps(state)

state_after	=	pickle.loads(serialized)

print(state_after.__dict__)

>>>

{‘lives’:	4,	‘level’:	0,	‘points’:	0}

But	what	happens	to	older	saved	GameState	objects	that	the	user	may	want	to	resume?
Here,	I	unpickle	an	old	game	file	using	a	program	with	the	new	definition	of	the
GameState	class:
Click	here	to	view	code	image

with	open(state_path,	‘rb’)	as	f:

				state_after	=	pickle.load(f)

print(state_after.__dict__)

>>>

{‘lives’:	3,	‘level’:	1}

The	points	attribute	is	missing!	This	is	especially	confusing	because	the	returned	object
is	an	instance	of	the	new	GameState	class.
Click	here	to	view	code	image

assert	isinstance(state_after,	GameState)

This	behavior	is	a	byproduct	of	the	way	the	pickle	module	works.	Its	primary	use	case
is	making	it	easy	to	serialize	objects.	As	soon	as	your	use	of	pickle	expands	beyond
trivial	usage,	the	module’s	functionality	starts	to	break	down	in	surprising	ways.

Fixing	these	problems	is	straightforward	using	the	copyreg	built-in	module.	The
copyreg	module	lets	you	register	the	functions	responsible	for	serializing	Python
objects,	allowing	you	to	control	the	behavior	of	pickle	and	make	it	more	reliable.



Default	Attribute	Values
In	the	simplest	case,	you	can	use	a	constructor	with	default	arguments	(see	Item	19:
“Provide	Optional	Behavior	with	Keyword	Arguments”)	to	ensure	that	GameState
objects	will	always	have	all	attributes	after	unpickling.	Here,	I	redefine	the	constructor	this
way:
Click	here	to	view	code	image

class	GameState(object):

				def	__init__(self,	level=0,	lives=4,	points=0):

								self.level	=	level

								self.lives	=	lives

								self.points	=	points

To	use	this	constructor	for	pickling,	I	define	a	helper	function	that	takes	a	GameState
object	and	turns	it	into	a	tuple	of	parameters	for	the	copyreg	module.	The	returned	tuple
contains	the	function	to	use	for	unpickling	and	the	parameters	to	pass	to	the	unpickling
function.
Click	here	to	view	code	image

def	pickle_game_state(game_state):

				kwargs	=	game_state.__dict__

				return	unpickle_game_state,	(kwargs,)

Now,	I	need	to	define	the	unpickle_game_state	helper.	This	function	takes
serialized	data	and	parameters	from	pickle_game_state	and	returns	the
corresponding	GameState	object.	It’s	a	tiny	wrapper	around	the	constructor.
Click	here	to	view	code	image

def	unpickle_game_state(kwargs):

				return	GameState(**kwargs)

Now,	I	register	these	with	the	copyreg	built-in	module.
Click	here	to	view	code	image

copyreg.pickle(GameState,	pickle_game_state)

Serializing	and	deserializing	works	as	before.
Click	here	to	view	code	image

state	=	GameState()

state.points	+=	1000

serialized	=	pickle.dumps(state)

state_after	=	pickle.loads(serialized)

print(state_after.__dict__)

>>>

{‘lives’:	4,	‘level’:	0,	‘points’:	1000}

With	this	registration	done,	now	I	can	change	the	definition	of	GameState	to	give	the
player	a	count	of	magic	spells	to	use.	This	change	is	similar	to	when	I	added	the	points
field	to	GameState.
Click	here	to	view	code	image

class	GameState(object):

				def	__init__(self,	level=0,	lives=4,	points=0,	magic=5):



								#	…

But	unlike	before,	deserializing	an	old	GameState	object	will	result	in	valid	game	data
instead	of	missing	attributes.	This	works	because	unpickle_game_state	calls	the
GameState	constructor	directly.	The	constructor’s	keyword	arguments	have	default
values	when	parameters	are	missing.	This	causes	old	game	state	files	to	receive	the	default
value	for	the	new	magic	field	when	they	are	deserialized.
Click	here	to	view	code	image

state_after	=	pickle.loads(serialized)

print(state_after.__dict__)

>>>

{‘level’:	0,	‘points’:	1000,	‘magic’:	5,	‘lives’:	4}

Versioning	Classes
Sometimes	you’ll	need	to	make	backwards-incompatible	changes	to	your	Python	objects
by	removing	fields.	This	prevents	the	default	argument	approach	to	serialization	from
working.

For	example,	say	you	realize	that	a	limited	number	of	lives	is	a	bad	idea,	and	you	want	to
remove	the	concept	of	lives	from	the	game.	Here,	I	redefine	the	GameState	to	no	longer
have	a	lives	field:
Click	here	to	view	code	image

class	GameState(object):

				def	__init__(self,	level=0,	points=0,	magic=5):

								#	…

The	problem	is	that	this	breaks	deserializing	old	game	data.	All	fields	from	the	old	data,
even	ones	removed	from	the	class,	will	be	passed	to	the	GameState	constructor	by	the
unpickle_game_state	function.
Click	here	to	view	code	image

pickle.loads(serialized)

>>>

TypeError:	__init__()	got	an	unexpected	keyword	argument	‘lives’

The	solution	is	to	add	a	version	parameter	to	the	functions	supplied	to	copyreg.	New
serialized	data	will	have	a	version	of	2	specified	when	pickling	a	new	GameState
object.
Click	here	to	view	code	image

def	pickle_game_state(game_state):

				kwargs	=	game_state.__dict__

				kwargs[‘version’]	=	2

				return	unpickle_game_state,	(kwargs,)

Old	versions	of	the	data	will	not	have	a	version	argument	present,	allowing	you	to
manipulate	the	arguments	passed	to	the	GameState	constructor	accordingly.
Click	here	to	view	code	image

def	unpickle_game_state(kwargs):



				version	=	kwargs.pop(‘version’,	1)

				if	version	==	1:

								kwargs.pop(‘lives’)

				return	GameState(**kwargs)

Now,	deserializing	an	old	object	works	properly.
Click	here	to	view	code	image

copyreg.pickle(GameState,	pickle_game_state)

state_after	=	pickle.loads(serialized)

print(state_after.__dict__)

>>>

{‘magic’:	5,	‘level’:	0,	‘points’:	1000}

You	can	continue	this	approach	to	handle	changes	between	future	versions	of	the	same
class.	Any	logic	you	need	to	adapt	an	old	version	of	the	class	to	a	new	version	of	the	class
can	go	in	the	unpickle_game_state	function.

Stable	Import	Paths
One	other	issue	you	may	encounter	with	pickle	is	breakage	from	renaming	a	class.
Often	over	the	life	cycle	of	a	program,	you’ll	refactor	your	code	by	renaming	classes	and
moving	them	to	other	modules.	Unfortunately,	this	will	break	the	pickle	module	unless
you’re	careful.

Here,	I	rename	the	GameState	class	to	BetterGameState,	removing	the	old	class
from	the	program	entirely:
Click	here	to	view	code	image

class	BetterGameState(object):

				def	__init__(self,	level=0,	points=0,	magic=5):

								#	…

Attempting	to	deserialize	an	old	GameState	object	will	now	fail	because	the	class	can’t
be	found.
Click	here	to	view	code	image

pickle.loads(serialized)

>>>

AttributeError:	Can’t	get	attribute	‘GameState’	on	<module	‘__main__’	from

‘my_code.py’>

The	cause	of	this	exception	is	that	the	import	path	of	the	serialized	object’s	class	is
encoded	in	the	pickled	data.
Click	here	to	view	code	image

print(serialized[:25])

>>>

b’\x80\x03c__main__\nGameState\nq\x00)’

The	solution	is	to	use	copyreg	again.	You	can	specify	a	stable	identifier	for	the	function
to	use	for	unpickling	an	object.	This	allows	you	to	transition	pickled	data	to	different
classes	with	different	names	when	it’s	deserialized.	It	gives	you	a	level	of	indirection.
Click	here	to	view	code	image



copyreg.pickle(BetterGameState,	pickle_game_state)

After	using	copyreg,	you	can	see	that	the	import	path	to	pickle_game_state	is
encoded	in	the	serialized	data	instead	of	BetterGameState.
Click	here	to	view	code	image

state	=	BetterGameState()

serialized	=	pickle.dumps(state)

print(serialized[:35])

>>>

b’\x80\x03c__main__\nunpickle_game_state\nq\x00}’

The	only	gotcha	is	that	you	can’t	change	the	path	of	the	module	in	which	the
unpickle_game_state	function	is	present.	Once	you	serialize	data	with	a	function,	it
must	remain	available	on	that	import	path	for	deserializing	in	the	future.

Things	to	Remember
	The	pickle	built-in	module	is	only	useful	for	serializing	and	deserializing	objects
between	trusted	programs.

	The	pickle	module	may	break	down	when	used	for	more	than	trivial	use	cases.

	Use	the	copyreg	built-in	module	with	pickle	to	add	missing	attribute	values,
allow	versioning	of	classes,	and	provide	stable	import	paths.

Item	45:	Use	datetime	Instead	of	time	for	Local	Clocks
Coordinated	Universal	Time	(UTC)	is	the	standard,	time-zone-independent	representation
of	time.	UTC	works	great	for	computers	that	represent	time	as	seconds	since	the	UNIX
epoch.	But	UTC	isn’t	ideal	for	humans.	Humans	reference	time	relative	to	where	they’re
currently	located.	People	say	“noon”	or	“8	am”	instead	of	“UTC	15:00	minus	7	hours.”	If
your	program	handles	time,	you’ll	probably	find	yourself	converting	time	between	UTC
and	local	clocks	to	make	it	easier	for	humans	to	understand.

Python	provides	two	ways	of	accomplishing	time	zone	conversions.	The	old	way,	using
the	time	built-in	module,	is	disastrously	error	prone.	The	new	way,	using	the	datetime
built-in	module,	works	great	with	some	help	from	the	community-built	package	named
pytz.

You	should	be	acquainted	with	both	time	and	datetime	to	thoroughly	understand	why
datetime	is	the	best	choice	and	time	should	be	avoided.

The	time	Module
The	localtime	function	from	the	time	built-in	module	lets	you	convert	a	UNIX
timestamp	(seconds	since	the	UNIX	epoch	in	UTC)	to	a	local	time	that	matches	the	host
computer’s	time	zone	(Pacific	Daylight	Time,	in	my	case).
Click	here	to	view	code	image

from	time	import	localtime,	strftime

now	=	1407694710



local_tuple	=	localtime(now)

time_format	=	‘%Y-%m-%d	%H:%M:%S’

time_str	=	strftime(time_format,	local_tuple)

print(time_str)

>>>

2014-08-10	11:18:30

You’ll	often	need	to	go	the	other	way	as	well,	starting	with	user	input	in	local	time	and
converting	it	to	UTC	time.	You	can	do	this	by	using	the	strptime	function	to	parse	the
time	string,	then	call	mktime	to	convert	local	time	to	a	UNIX	timestamp.
Click	here	to	view	code	image

from	time	import	mktime,	strptime

time_tuple	=	strptime(time_str,	time_format)

utc_now	=	mktime(time_tuple)

print(utc_now)

>>>

1407694710.0

How	do	you	convert	local	time	in	one	time	zone	to	local	time	in	another?	For	example,
say	you	are	taking	a	flight	between	San	Francisco	and	New	York,	and	want	to	know	what
time	it	will	be	in	San	Francisco	once	you’ve	arrived	in	New	York.

Directly	manipulating	the	return	values	from	the	time,	localtime,	and	strptime
functions	to	do	time	zone	conversions	is	a	bad	idea.	Time	zones	change	all	the	time	due	to
local	laws.	It’s	too	complicated	to	manage	yourself,	especially	if	you	want	to	handle	every
global	city	for	flight	departure	and	arrival.

Many	operating	systems	have	configuration	files	that	keep	up	with	the	time	zone	changes
automatically.	Python	lets	you	use	these	time	zones	through	the	time	module.	For
example,	here	I	parse	the	departure	time	from	the	San	Francisco	time	zone	of	Pacific
Daylight	Time:
Click	here	to	view	code	image

parse_format	=	‘%Y-%m-%d	%H:%M:%S	%Z’

depart_sfo	=	‘2014-05-01	15:45:16	PDT’

time_tuple	=	strptime(depart_sfo,	parse_format)

time_str	=	strftime(time_format,	time_tuple)

print(time_str)

>>>

2014-05-01	15:45:16

After	seeing	that	PDT	works	with	the	strptime	function,	you	might	also	assume	that
other	time	zones	known	to	my	computer	will	also	work.	Unfortunately,	this	isn’t	the	case.
Instead,	strptime	raises	an	exception	when	it	sees	Eastern	Daylight	Time	(the	time
zone	for	New	York).
Click	here	to	view	code	image

arrival_nyc	=	‘2014-05-01	23:33:24	EDT’

time_tuple	=	strptime(arrival_nyc,	time_format)

>>>



ValueError:	unconverted	data	remains:		EDT

The	problem	here	is	the	platform-dependent	nature	of	the	time	module.	Its	actual
behavior	is	determined	by	how	the	underlying	C	functions	work	with	the	host	operating
system.	This	makes	the	functionality	of	the	time	module	unreliable	in	Python.	The	time
module	fails	to	consistently	work	properly	for	multiple	local	times.	Thus,	you	should
avoid	the	time	module	for	this	purpose.	If	you	must	use	time,	only	use	it	to	convert
between	UTC	and	the	host	computer’s	local	time.	For	all	other	types	of	conversions,	use
the	datetime	module.

The	datetime	Module
The	second	option	for	representing	times	in	Python	is	the	datetime	class	from	the
datetime	built-in	module.	Like	the	time	module,	datetime	can	be	used	to	convert
from	the	current	time	in	UTC	to	local	time.

Here,	I	take	the	present	time	in	UTC	and	convert	it	to	my	computer’s	local	time	(Pacific
Daylight	Time):
Click	here	to	view	code	image

from	datetime	import	datetime,	timezone

now	=	datetime(2014,	8,	10,	18,	18,	30)

now_utc	=	now.replace(tzinfo=timezone.utc)

now_local	=	now_utc.astimezone()

print(now_local)

>>>

2014-08-10	11:18:30-07:00

The	datetime	module	can	also	easily	convert	a	local	time	back	to	a	UNIX	timestamp	in
UTC.
Click	here	to	view	code	image

time_str	=	‘2014-08-10	11:18:30’

now	=	datetime.strptime(time_str,	time_format)

time_tuple	=	now.timetuple()

utc_now	=	mktime(time_tuple)

print(utc_now)

>>>

1407694710.0

Unlike	the	time	module,	the	datetime	module	has	facilities	for	reliably	converting
from	one	local	time	to	another	local	time.	However,	datetime	only	provides	the
machinery	for	time	zone	operations	with	its	tzinfo	class	and	related	methods.	What’s
missing	are	the	time	zone	definitions	besides	UTC.

Luckily,	the	Python	community	has	addressed	this	gap	with	the	pytz	module	that’s
available	for	download	from	the	Python	Package	Index
(https://pypi.python.org/pypi/pytz/).	pytz	contains	a	full	database	of	every	time	zone
definition	you	might	need.

To	use	pytz	effectively,	you	should	always	convert	local	times	to	UTC	first.	Perform	any

https://pypi.python.org/pypi/pytz/


datetime	operations	you	need	on	the	UTC	values	(such	as	offsetting).	Then,	convert	to
local	times	as	a	final	step.

For	example,	here	I	convert	an	NYC	flight	arrival	time	to	a	UTC	datetime.	Although
some	of	these	calls	seem	redundant,	all	of	them	are	necessary	when	using	pytz.
Click	here	to	view	code	image

arrival_nyc	=	‘2014-05-01	23:33:24’

nyc_dt_naive	=	datetime.strptime(arrival_nyc,	time_format)

eastern	=	pytz.timezone(‘US/Eastern’)

nyc_dt	=	eastern.localize(nyc_dt_naive)

utc_dt	=	pytz.utc.normalize(nyc_dt.astimezone(pytz.utc))

print(utc_dt)

>>>

2014-05-02	03:33:24+00:00

Once	I	have	a	UTC	datetime,	I	can	convert	it	to	San	Francisco	local	time.
Click	here	to	view	code	image

pacific	=	pytz.timezone(‘US/Pacific’)

sf_dt	=	pacific.normalize(utc_dt.astimezone(pacific))

print(sf_dt)

>>>

2014-05-01	20:33:24-07:00

Just	as	easily,	I	can	convert	it	to	the	local	time	in	Nepal.
Click	here	to	view	code	image

nepal	=	pytz.timezone(‘Asia/Katmandu’)

nepal_dt	=	nepal.normalize(utc_dt.astimezone(nepal))

print(nepal_dt)

>>>

2014-05-02	09:18:24+05:45

With	datetime	and	pytz,	these	conversions	are	consistent	across	all	environments
regardless	of	what	operating	system	the	host	computer	is	running.

Things	to	Remember
	Avoid	using	the	time	module	for	translating	between	different	time	zones.

	Use	the	datetime	built-in	module	along	with	the	pytz	module	to	reliably	convert
between	times	in	different	time	zones.

	Always	represent	time	in	UTC	and	do	conversions	to	local	time	as	the	final	step
before	presentation.



Item	46:	Use	Built-in	Algorithms	and	Data	Structures
When	you’re	implementing	Python	programs	that	handle	a	non-trivial	amount	of	data,
you’ll	eventually	see	slowdowns	caused	by	the	algorithmic	complexity	of	your	code.	This
usually	isn’t	the	result	of	Python’s	speed	as	a	language	(see	Item	41:	“Consider
concurrent.futures	for	True	Parallelism”	if	it	is).	The	issue,	more	likely,	is	that
you	aren’t	using	the	best	algorithms	and	data	structures	for	your	problem.

Luckily,	the	Python	standard	library	has	many	of	the	algorithms	and	data	structures	you’ll
need	to	use	built	in.	Besides	speed,	using	these	common	algorithms	and	data	structures
can	make	your	life	easier.	Some	of	the	most	valuable	tools	you	may	want	to	use	are	tricky
to	implement	correctly.	Avoiding	reimplementation	of	common	functionality	will	save	you
time	and	headaches.

Double-ended	Queue
The	deque	class	from	the	collections	module	is	a	double-ended	queue.	It	provides
constant	time	operations	for	inserting	or	removing	items	from	its	beginning	or	end.	This
makes	it	ideal	for	first-in-first-out	(FIFO)	queues.
Click	here	to	view	code	image

fifo	=	deque()

fifo.append(1)						#	Producer

x	=	fifo.popleft()		#	Consumer

The	list	built-in	type	also	contains	an	ordered	sequence	of	items	like	a	queue.	You	can
insert	or	remove	items	from	the	end	of	a	list	in	constant	time.	But	inserting	or	removing
items	from	the	head	of	a	list	takes	linear	time,	which	is	much	slower	than	the	constant
time	of	a	deque.

Ordered	Dictionary
Standard	dictionaries	are	unordered.	That	means	a	dict	with	the	same	keys	and	values
can	result	in	different	orders	of	iteration.	This	behavior	is	a	surprising	byproduct	of	the
way	the	dictionary’s	fast	hash	table	is	implemented.
Click	here	to	view	code	image

a	=	{}

a[‘foo’]	=	1

a[‘bar’]	=	2

#	Randomly	populate	‘b’	to	cause	hash	conflicts

while	True:

				z	=	randint(99,	1013)

				b	=	{}

				for	i	in	range(z):

								b[i]	=	i

				b[‘foo’]	=	1

				b[‘bar’]	=	2

				for	i	in	range(z):

								del	b[i]

				if	str(b)	!=	str(a):

								break



print(a)

print(b)

print(‘Equal?’,	a	==	b)

>>>

{‘foo’:	1,	‘bar’:	2}

{‘bar’:	2,	‘foo’:	1}

Equal?	True

The	OrderedDict	class	from	the	collections	module	is	a	special	type	of
dictionary	that	keeps	track	of	the	order	in	which	its	keys	were	inserted.	Iterating	the	keys
of	an	OrderedDict	has	predictable	behavior.	This	can	vastly	simplify	testing	and
debugging	by	making	all	code	deterministic.
Click	here	to	view	code	image

a	=	OrderedDict()

a[‘foo’]	=	1

a[‘bar’]	=	2

b	=	OrderedDict()

b[‘foo’]	=	‘red’

b[‘bar’]	=	‘blue’

for	value1,	value2	in	zip(a.values(),	b.values()):

				print(value1,	value2)

>>>

1	red

2	blue

Default	Dictionary
Dictionaries	are	useful	for	bookkeeping	and	tracking	statistics.	One	problem	with
dictionaries	is	that	you	can’t	assume	any	keys	are	already	present.	That	makes	it	clumsy	to
do	simple	things	like	increment	a	counter	stored	in	a	dictionary.

stats	=	{}

key	=	‘my_counter’

if	key	not	in	stats:

			stats[key]	=	0

stats[key]	+=	1

The	defaultdict	class	from	the	collections	module	simplifies	this	by
automatically	storing	a	default	value	when	a	key	doesn’t	exist.	All	you	have	to	do	is
provide	a	function	that	will	return	the	default	value	each	time	a	key	is	missing.	In	this
example,	the	int	built-in	function	returns	0	(see	Item	23:	“Accept	Functions	for	Simple
Interfaces	Instead	of	Classes”	for	another	example).	Now,	incrementing	a	counter	is
simple.

stats	=	defaultdict(int)

stats[‘my_counter’]	+=	1



Heap	Queue
Heaps	are	useful	data	structures	for	maintaining	a	priority	queue.	The	heapq	module
provides	functions	for	creating	heaps	in	standard	list	types	with	functions	like
heappush,	heappop,	and	nsmallest.

Items	of	any	priority	can	be	inserted	into	the	heap	in	any	order.
a	=	[]

heappush(a,	5)

heappush(a,	3)

heappush(a,	7)

heappush(a,	4)

Items	are	always	removed	by	highest	priority	(lowest	number)	first.
Click	here	to	view	code	image

print(heappop(a),	heappop(a),	heappop(a),	heappop(a))

>>>

3	4	5	7

The	resulting	list	is	easy	to	use	outside	of	heapq.	Accessing	the	0	index	of	the	heap
will	always	return	the	smallest	item.
Click	here	to	view	code	image

a	=	[]

heappush(a,	5)

heappush(a,	3)

heappush(a,	7)

heappush(a,	4)

assert	a[0]	==	nsmallest(1,	a)[0]	==	3

Calling	the	sort	method	on	the	list	maintains	the	heap	invariant.
print(‘Before:’,	a)

a.sort()

print(‘After:	‘,	a)

>>>

Before:	[3,	4,	7,	5]

After:		[3,	4,	5,	7]

Each	of	these	heapq	operations	takes	logarithmic	time	in	proportion	to	the	length	of	the
list.	Doing	the	same	work	with	a	standard	Python	list	would	scale	linearly.

Bisection
Searching	for	an	item	in	a	list	takes	linear	time	proportional	to	its	length	when	you	call
the	index	method.

x	=	list(range(10**6))

i	=	x.index(991234)

The	bisect	module’s	functions,	such	as	bisect_left,	provide	an	efficient	binary
search	through	a	sequence	of	sorted	items.	The	index	it	returns	is	the	insertion	point	of	the
value	into	the	sequence.

i	=	bisect_left(x,	991234)



The	complexity	of	a	binary	search	is	logarithmic.	That	means	using	bisect	to	search	a
list	of	1	million	items	takes	roughly	the	same	amount	of	time	as	using	index	to	linearly
search	a	list	of	14	items.	It’s	way	faster!

Iterator	Tools
The	itertools	built-in	module	contains	a	large	number	of	functions	that	are	useful	for
organizing	and	interacting	with	iterators	(see	Item	16:	“Consider	Generators	Instead	of
Returning	Lists”	and	Item	17:	“Be	Defensive	When	Iterating	Over	Arguments”	for
background).	Not	all	of	these	are	available	in	Python	2,	but	they	can	easily	be	built	using
simple	recipes	documented	in	the	module.	See	help(itertools)	in	an	interactive
Python	session	for	more	details.

The	itertools	functions	fall	into	three	main	categories:

	Linking	iterators	together

•	chain:	Combines	multiple	iterators	into	a	single	sequential	iterator.

•	cycle:	Repeats	an	iterator’s	items	forever.

•	tee:	Splits	a	single	iterator	into	multiple	parallel	iterators.

•	zip_longest:	A	variant	of	the	zip	built-in	function	that	works	well	with
iterators	of	different	lengths.

	Filtering	items	from	an	iterator

•	islice:	Slices	an	iterator	by	numerical	indexes	without	copying.

•	takewhile:	Returns	items	from	an	iterator	while	a	predicate	function	returns
True.

•	dropwhile:	Returns	items	from	an	iterator	once	the	predicate	function	returns
False	for	the	first	time.

•	filterfalse:	Returns	all	items	from	an	iterator	where	a	predicate	function
returns	False.	The	opposite	of	the	filter	built-in	function.

	Combinations	of	items	from	iterators

•	product:	Returns	the	Cartesian	product	of	items	from	an	iterator,	which	is	a
nice	alternative	to	deeply	nested	list	comprehensions.

•	permutations:	Returns	ordered	permutations	of	length	N	with	items	from	an
iterator.

•	combination:	Returns	the	unordered	combinations	of	length	N	with
unrepeated	items	from	an	iterator.

There	are	even	more	functions	and	recipes	available	in	the	itertools	module	that	I
don’t	mention	here.	Whenever	you	find	yourself	dealing	with	some	tricky	iteration	code,
it’s	worth	looking	at	the	itertools	documentation	again	to	see	whether	there’s
anything	there	for	you	to	use.



Things	to	Remember
	Use	Python’s	built-in	modules	for	algorithms	and	data	structures.

	Don’t	reimplement	this	functionality	yourself.	It’s	hard	to	get	right.

Item	47:	Use	decimal	When	Precision	Is	Paramount
Python	is	an	excellent	language	for	writing	code	that	interacts	with	numerical	data.
Python’s	integer	type	can	represent	values	of	any	practical	size.	Its	double-precision
floating	point	type	complies	with	the	IEEE	754	standard.	The	language	also	provides	a
standard	complex	number	type	for	imaginary	values.	However,	these	aren’t	enough	for
every	situation.

For	example,	say	you	want	to	compute	the	amount	to	charge	a	customer	for	an
international	phone	call.	You	know	the	time	in	minutes	and	seconds	that	the	customer	was
on	the	phone	(say,	3	minutes	42	seconds).	You	also	have	a	set	rate	for	the	cost	of	calling
Antarctica	from	the	United	States	($1.45/minute).	What	should	the	charge	be?

With	floating	point	math,	the	computed	charge	seems	reasonable.
rate	=	1.45

seconds	=	3*60	+	42

cost	=	rate	*	seconds	/	60

print(cost)

>>>

5.364999999999999

But	rounding	it	to	the	nearest	whole	cent	rounds	down	when	you	want	it	to	round	up	to
properly	cover	all	costs	incurred	by	the	customer.

print(round(cost,	2))

>>>

5.36

Say	you	also	want	to	support	very	short	phone	calls	between	places	that	are	much	cheaper
to	connect.	Here,	I	compute	the	charge	for	a	phone	call	that	was	5	seconds	long	with	a	rate
of	$0.05/minute:

rate	=	0.05

seconds	=	5

cost	=	rate	*	seconds	/	60

print(cost)

>>>

0.004166666666666667

The	resulting	float	is	so	low	that	it	rounds	down	to	zero.	This	won’t	do!
print(round(cost,	2))

>>>

0.0

The	solution	is	to	use	the	Decimal	class	from	the	decimal	built-in	module.	The
Decimal	class	provides	fixed	point	math	of	28	decimal	points	by	default.	It	can	go	even



higher	if	required.	This	works	around	the	precision	issues	in	IEEE	754	floating	point
numbers.	The	class	also	gives	you	more	control	over	rounding	behaviors.

For	example,	redoing	the	Antarctica	calculation	with	Decimal	results	in	an	exact	charge
instead	of	an	approximation.
Click	here	to	view	code	image

rate	=	Decimal(‘1.45’)

seconds	=	Decimal(‘222’)		#	3*60	+	42

cost	=	rate	*	seconds	/	Decimal(‘60’)

print(cost)

>>>

5.365

The	Decimal	class	has	a	built-in	function	for	rounding	to	exactly	the	decimal	place	you
need	with	the	rounding	behavior	you	want.
Click	here	to	view	code	image

rounded	=	cost.quantize(Decimal(‘0.01’),	rounding=ROUND_UP)

print(rounded)

>>>

5.37

Using	the	quantize	method	this	way	also	properly	handles	the	small	usage	case	for
short,	cheap	phone	calls.	Here,	you	can	see	the	Decimal	cost	is	still	less	than	1	cent	for
the	call:
Click	here	to	view	code	image

rate	=	Decimal(‘0.05’)

seconds	=	Decimal(‘5’)

cost	=	rate	*	seconds	/	Decimal(‘60’)

print(cost)

>>>

0.004166666666666666666666666667

But	the	quantize	behavior	ensures	that	this	is	rounded	up	to	one	whole	cent.
Click	here	to	view	code	image

rounded	=	cost.quantize(Decimal(‘0.01’),	rounding=ROUND_UP)

print(rounded)

>>>

0.01

While	Decimal	works	great	for	fixed	point	numbers,	it	still	has	limitations	in	its
precision	(e.g.,	1/3	will	be	an	approximation).	For	representing	rational	numbers	with	no
limit	to	precision,	consider	using	the	Fraction	class	from	the	fractions	built-in
module.

Things	to	Remember
	Python	has	built-in	types	and	classes	in	modules	that	can	represent	practically	every
type	of	numerical	value.



	The	Decimal	class	is	ideal	for	situations	that	require	high	precision	and	exact
rounding	behavior,	such	as	computations	of	monetary	values.

Item	48:	Know	Where	to	Find	Community-Built	Modules
Python	has	a	central	repository	of	modules	(https://pypi.python.org)	for	you	to	install	and
use	in	your	programs.	These	modules	are	built	and	maintained	by	people	like	you:	the
Python	community.	When	you	find	yourself	facing	an	unfamiliar	challenge,	the	Python
Package	Index	(PyPI)	is	a	great	place	to	look	for	code	that	will	get	you	closer	to	your	goal.

To	use	the	Package	Index,	you’ll	need	to	use	a	command-line	tool	named	pip.	pip	is
installed	by	default	in	Python	3.4	and	above	(it’s	also	accessible	with	python	-m	pip).
For	earlier	versions,	you	can	find	instructions	for	installing	pip	on	the	Python	Packaging
website	(https://packaging.python.org).

Once	installed,	using	pip	to	install	a	new	module	is	simple.	For	example,	here	I	install
the	pytz	module	that	I	used	in	another	item	in	this	chapter	(see	Item	45:	“Use
datetime	Instead	of	time	for	Local	Clocks”):
Click	here	to	view	code	image

$	pip3	install	pytz

Downloading/unpacking	pytz

		Downloading	pytz-2014.4.tar.bz2	(159kB):	159kB	downloaded

		Running	setup.py	(…)	egg_info	for	package	pytz

Installing	collected	packages:	pytz

		Running	setup.py	install	for	pytz

Successfully	installed	pytz

Cleaning	up…

In	the	example	above,	I	used	the	pip3	command-line	to	install	the	Python	3	version	of
the	package.	The	pip	command-line	(without	the	3)	is	also	available	for	installing
packages	for	Python	2.	The	majority	of	popular	packages	are	now	available	for	either
version	of	Python	(see	Item	1:	“Know	Which	Version	of	Python	You’re	Using”).	pip	can
also	be	used	with	pyvenv	to	track	sets	of	packages	to	install	for	your	projects	(see	Item
53:	“Use	Virtual	Environments	for	Isolated	and	Reproducible	Dependencies”).

Each	module	in	the	PyPI	has	its	own	software	license.	Most	of	the	packages,	especially
the	popular	ones,	have	free	or	open	source	licenses	(see	http://opensource.org	for	details).
In	most	cases,	these	licenses	allow	you	to	include	a	copy	of	the	module	with	your	program
(when	in	doubt,	talk	to	a	lawyer).

Things	to	Remember
	The	Python	Package	Index	(PyPI)	contains	a	wealth	of	common	packages	that	are
built	and	maintained	by	the	Python	community.

	pip	is	the	command-line	tool	to	use	for	installing	packages	from	PyPI.

	pip	is	installed	by	default	in	Python	3.4	and	above;	you	must	install	it	yourself	for
older	versions.

https://pypi.python.org
https://packaging.python.org
http://opensource.org


	The	majority	of	PyPI	modules	are	free	and	open	source	software.



7.	Collaboration

There	are	language	features	in	Python	to	help	you	construct	well-defined	APIs	with	clear
interface	boundaries.	The	Python	community	has	established	best	practices	that	maximize
the	maintainability	of	code	over	time.	There	are	also	standard	tools	that	ship	with	Python
that	enable	large	teams	to	work	together	across	disparate	environments.

Collaborating	with	others	on	Python	programs	requires	being	deliberate	about	how	you
write	your	code.	Even	if	you’re	working	on	your	own,	chances	are	you’ll	be	using	code
written	by	someone	else	via	the	standard	library	or	open	source	packages.	It’s	important	to
understand	the	mechanisms	that	make	it	easy	to	collaborate	with	other	Python
programmers.

Item	49:	Write	Docstrings	for	Every	Function,	Class,	and
Module
Documentation	in	Python	is	extremely	important	because	of	the	dynamic	nature	of	the
language.	Python	provides	built-in	support	for	attaching	documentation	to	blocks	of	code.
Unlike	many	other	languages,	the	documentation	from	a	program’s	source	code	is	directly
accessible	as	the	program	runs.

For	example,	you	can	add	documentation	by	providing	a	docstring	immediately	after	the
def	statement	of	a	function.
Click	here	to	view	code	image

def	palindrome(word):

				“““Return	True	if	the	given	word	is	a	palindrome.”””

				return	word	==	word[::-1]

You	can	retrieve	the	docstring	from	within	the	Python	program	itself	by	accessing	the
function’s	__doc__	special	attribute.
Click	here	to	view	code	image

print(repr(palindrome.__doc__))

>>>

‘Return	True	if	the	given	word	is	a	palindrome.’

Docstrings	can	be	attached	to	functions,	classes,	and	modules.	This	connection	is	part	of
the	process	of	compiling	and	running	a	Python	program.	Support	for	docstrings	and	the
__doc__	attribute	has	three	consequences:

	The	accessibility	of	documentation	makes	interactive	development	easier.	You	can
inspect	functions,	classes,	and	modules	to	see	their	documentation	by	using	the
help	built-in	function.	This	makes	the	Python	interactive	interpreter	(the	Python
“shell”)	and	tools	like	IPython	Notebook	(http://ipython.org)	a	joy	to	use	while
you’re	developing	algorithms,	testing	APIs,	and	writing	code	snippets.

	A	standard	way	of	defining	documentation	makes	it	easy	to	build	tools	that	convert
the	text	into	more	appealing	formats	(like	HTML).	This	has	led	to	excellent

http://ipython.org


documentation-generation	tools	for	the	Python	community,	such	as	Sphinx
(http://sphinx-doc.org).	It’s	also	enabled	community-funded	sites	like	Read	the	Docs
(https://readthedocs.org)	that	provide	free	hosting	of	beautiful-looking
documentation	for	open	source	Python	projects.

	Python’s	first-class,	accessible,	and	good-looking	documentation	encourages	people
to	write	more	documentation.	The	members	of	the	Python	community	have	a	strong
belief	in	the	importance	of	documentation.	There’s	an	assumption	that	“good	code”
also	means	well-documented	code.	This	means	that	you	can	expect	most	open
source	Python	libraries	to	have	decent	documentation.

To	participate	in	this	excellent	culture	of	documentation,	you	need	to	follow	a	few
guidelines	when	you	write	docstrings.	The	full	details	are	discussed	online	in	PEP	257
(http://www.python.org/dev/peps/pep-0257/).	There	are	a	few	best-practices	you	should	be
sure	to	follow.

Documenting	Modules
Each	module	should	have	a	top-level	docstring.	This	is	a	string	literal	that	is	the	first
statement	in	a	source	file.	It	should	use	three	double	quotes	(""").	The	goal	of	this
docstring	is	to	introduce	the	module	and	its	contents.

The	first	line	of	the	docstring	should	be	a	single	sentence	describing	the	module’s	purpose.
The	paragraphs	that	follow	should	contain	the	details	that	all	users	of	the	module	should
know	about	its	operation.	The	module	docstring	is	also	a	jumping-off	point	where	you	can
highlight	important	classes	and	functions	found	in	the	module.

Here’s	an	example	of	a	module	docstring:
Click	here	to	view	code	image

#	words.py

#!/usr/bin/env	python3

“““Library	for	testing	words	for	various	linguistic	patterns.

Testing	how	words	relate	to	each	other	can	be	tricky	sometimes!

This	module	provides	easy	ways	to	determine	when	words	you’ve

found	have	special	properties.

Available	functions:

-	palindrome:	Determine	if	a	word	is	a	palindrome.

-	check_anagram:	Determine	if	two	words	are	anagrams.

…

”””

#	…

If	the	module	is	a	command-line	utility,	the	module	docstring	is	also	a	great	place	to	put
usage	information	for	running	the	tool	from	the	command-line.

http://sphinx-doc.org
https://readthedocs.org
http://www.python.org/dev/peps/pep-0257/


Documenting	Classes
Each	class	should	have	a	class-level	docstring.	This	largely	follows	the	same	pattern	as	the
module-level	docstring.	The	first	line	is	the	single-sentence	purpose	of	the	class.
Paragraphs	that	follow	discuss	important	details	of	the	class’s	operation.

Important	public	attributes	and	methods	of	the	class	should	be	highlighted	in	the	class-
level	docstring.	It	should	also	provide	guidance	to	subclasses	on	how	to	properly	interact
with	protected	attributes	(see	Item	27:	“Prefer	Public	Attributes	Over	Private	Ones”)	and
the	superclass’s	methods.

Here’s	an	example	of	a	class	docstring:
Click	here	to	view	code	image

class	Player(object):

				“““Represents	a	player	of	the	game.

				Subclasses	may	override	the	‘tick’	method	to	provide

				custom	animations	for	the	player’s	movement	depending

				on	their	power	level,	etc.

				Public	attributes:

				-	power:	Unused	power-ups	(float	between	0	and	1).

				-	coins:	Coins	found	during	the	level	(integer).

				”””

				#	…

Documenting	Functions
Each	public	function	and	method	should	have	a	docstring.	This	follows	the	same	pattern
as	modules	and	classes.	The	first	line	is	the	single-sentence	description	of	what	the
function	does.	The	paragraphs	that	follow	should	describe	any	specific	behaviors	and	the
arguments	for	the	function.	Any	return	values	should	be	mentioned.	Any	exceptions	that
callers	must	handle	as	part	of	the	function’s	interface	should	be	explained.

Here’s	an	example	of	a	function	docstring:
Click	here	to	view	code	image

def	find_anagrams(word,	dictionary):

				“““Find	all	anagrams	for	a	word.

				This	function	only	runs	as	fast	as	the	test	for

				membership	in	the	‘dictionary’	container.	It	will

				be	slow	if	the	dictionary	is	a	list	and	fast	if

				it’s	a	set.

				Args:

								word:	String	of	the	target	word.

								dictionary:	Container	with	all	strings	that

												are	known	to	be	actual	words.

				Returns:

								List	of	anagrams	that	were	found.	Empty	if

								none	were	found.

				”””



				#	…

There	are	also	some	special	cases	in	writing	docstrings	for	functions	that	are	important	to
know.

	If	your	function	has	no	arguments	and	a	simple	return	value,	a	single	sentence
description	is	probably	good	enough.

	If	your	function	doesn’t	return	anything,	it’s	better	to	leave	out	any	mention	of	the
return	value	instead	of	saying	“returns	None.”

	If	you	don’t	expect	your	function	to	raise	an	exception	during	normal	operation,
don’t	mention	that	fact.

	If	your	function	accepts	a	variable	number	of	arguments	(see	Item	18:	“Reduce
Visual	Noise	with	Variable	Positional	Arguments”)	or	keyword-arguments	(see	Item
19:	“Provide	Optional	Behavior	with	Keyword	Arguments”),	use	*args	and
**kwargs	in	the	documented	list	of	arguments	to	describe	their	purpose.

	If	your	function	has	arguments	with	default	values,	those	defaults	should	be
mentioned	(see	Item	20:	“Use	None	and	Docstrings	to	Specify	Dynamic	Default
Arguments”).

	If	your	function	is	a	generator	(see	Item	16:	“Consider	Generators	Instead	of
Returning	Lists”),	then	your	docstring	should	describe	what	the	generator	yields
when	it’s	iterated.

	If	your	function	is	a	coroutine	(see	Item	40:	“Consider	Coroutines	to	Run	Many
Functions	Concurrently”),	then	your	docstring	should	contain	what	the	coroutine
yields,	what	it	expects	to	receive	from	yield	expressions,	and	when	it	will	stop
iteration.

Note

Once	you’ve	written	docstrings	for	your	modules,	it’s	important	to	keep	the
documentation	up	to	date.	The	doctest	built-in	module	makes	it	easy	to	exercise
usage	examples	embedded	in	docstrings	to	ensure	that	your	source	code	and	its
documentation	don’t	diverge	over	time.

Things	to	Remember
	Write	documentation	for	every	module,	class,	and	function	using	docstrings.	Keep
them	up	to	date	as	your	code	changes.

	For	modules:	Introduce	the	contents	of	the	module	and	any	important	classes	or
functions	all	users	should	know	about.

	For	classes:	Document	behavior,	important	attributes,	and	subclass	behavior	in	the
docstring	following	the	class	statement.

	For	functions	and	methods:	Document	every	argument,	returned	value,	raised
exception,	and	other	behaviors	in	the	docstring	following	the	def	statement.



Item	50:	Use	Packages	to	Organize	Modules	and	Provide
Stable	APIs
As	the	size	of	a	program’s	codebase	grows,	it’s	natural	for	you	to	reorganize	its	structure.
You	split	larger	functions	into	smaller	functions.	You	refactor	data	structures	into	helper
classes	(see	Item	22:	“Prefer	Helper	Classes	Over	Bookkeeping	with	Dictionaries	and
Tuples”).	You	separate	functionality	into	various	modules	that	depend	on	each	other.

At	some	point,	you’ll	find	yourself	with	so	many	modules	that	you	need	another	layer	in
your	program	to	make	it	understandable.	For	this	purpose,	Python	provides	packages.
Packages	are	modules	that	contain	other	modules.

In	most	cases,	packages	are	defined	by	putting	an	empty	file	named	__init__.py	into
a	directory.	Once	__init__.py	is	present,	any	other	Python	files	in	that	directory	will
be	available	for	import	using	a	path	relative	to	the	directory.	For	example,	imagine	that
you	have	the	following	directory	structure	in	your	program.

main.py

mypackage/__init__.py

mypackage/models.py

mypackage/utils.py

To	import	the	utils	module,	you	use	the	absolute	module	name	that	includes	the
package	directory’s	name.

#	main.py

from	mypackage	import	utils

This	pattern	continues	when	you	have	package	directories	present	within	other	packages
(like	mypackage.foo.bar).

Note

Python	3.4	introduces	namespace	packages,	a	more	flexible	way	to	define
packages.	Namespace	packages	can	be	composed	of	modules	from	completely
separate	directories,	zip	archives,	or	even	remote	systems.	For	details	on	how	to	use
the	advanced	features	of	namespace	packages,	see	PEP	420
(http://www.python.org/dev/peps/pep-0420/).

The	functionality	provided	by	packages	has	two	primary	purposes	in	Python	programs.

Namespaces
The	first	use	of	packages	is	to	help	divide	your	modules	into	separate	namespaces.	This
allows	you	to	have	many	modules	with	the	same	filename	but	different	absolute	paths	that
are	unique.	For	example,	here’s	a	program	that	imports	attributes	from	two	modules	with
the	same	name,	utils.py.	This	works	because	the	modules	can	be	addressed	by	their
absolute	paths.
Click	here	to	view	code	image

#	main.py

from	analysis.utils	import	log_base2_bucket

http://www.python.org/dev/peps/pep-0420/


from	frontend.utils	import	stringify

bucket	=	stringify(log_base2_bucket(33))

This	approach	breaks	down	when	the	functions,	classes,	or	submodules	defined	in
packages	have	the	same	names.	For	example,	say	you	want	to	use	the	inspect	function
from	both	the	analysis.utils	and	frontend.utils	modules.	Importing	the
attributes	directly	won’t	work	because	the	second	import	statement	will	overwrite	the
value	of	inspect	in	the	current	scope.
Click	here	to	view	code	image

#	main2.py

from	analysis.utils	import	inspect

from	frontend.utils	import	inspect		#	Overwrites!

The	solution	is	to	use	the	as	clause	of	the	import	statement	to	rename	whatever	you’ve
imported	for	the	current	scope.
Click	here	to	view	code	image

#	main3.py

from	analysis.utils	import	inspect	as	analysis_inspect

from	frontend.utils	import	inspect	as	frontend_inspect

value	=	33

if	analysis_inspect(value)	==	frontend_inspect(value):

				print(‘Inspection	equal!’)

The	as	clause	can	be	used	to	rename	anything	you	retrieve	with	the	import	statement,
including	entire	modules.	This	makes	it	easy	to	access	namespaced	code	and	make	its
identity	clear	when	you	use	it.

Note

Another	approach	for	avoiding	imported	name	conflicts	is	to	always	access	names
by	their	highest	unique	module	name.

For	the	example	above,	you’d	first	import	analysis.utils	and	import
frontend.utils.	Then,	you’d	access	the	inspect	functions	with	the	full
paths	of	analysis.utils.inspect	and	frontend.utils.inspect.

This	approach	allows	you	to	avoid	the	as	clause	altogether.	It	also	makes	it
abundantly	clear	to	new	readers	of	the	code	where	each	function	is	defined.

Stable	APIs
The	second	use	of	packages	in	Python	is	to	provide	strict,	stable	APIs	for	external
consumers.

When	you’re	writing	an	API	for	wider	consumption,	like	an	open	source	package	(see
Item	48:	“Know	Where	to	Find	Community-Built	Modules”),	you’ll	want	to	provide
stable	functionality	that	doesn’t	change	between	releases.	To	ensure	that	happens,	it’s
important	to	hide	your	internal	code	organization	from	external	users.	This	enables	you	to
refactor	and	improve	your	package’s	internal	modules	without	breaking	existing	users.



Python	can	limit	the	surface	area	exposed	to	API	consumers	by	using	the	__all__
special	attribute	of	a	module	or	package.	The	value	of	__all__	is	a	list	of	every	name	to
export	from	the	module	as	part	of	its	public	API.	When	consuming	code	does	from	foo
import	*,	only	the	attributes	in	foo.__all__	will	be	imported	from	foo.	If
__all__	isn’t	present	in	foo,	then	only	public	attributes,	those	without	a	leading
underscore,	are	imported	(see	Item	27:	“Prefer	Public	Attributes	Over	Private	Ones”).

For	example,	say	you	want	to	provide	a	package	for	calculating	collisions	between
moving	projectiles.	Here,	I	define	the	models	module	of	mypackage	to	contain	the
representation	of	projectiles:
Click	here	to	view	code	image

#	models.py

__all__	=	[‘Projectile’]

class	Projectile(object):

				def	__init__(self,	mass,	velocity):

								self.mass	=	mass

								self.velocity	=	velocity

I	also	define	a	utils	module	in	mypackage	to	perform	operations	on	the
Projectile	instances,	such	as	simulating	collisions	between	them.
Click	here	to	view	code	image

#	utils.py

from	.	models	import	Projectile

__all__	=	[‘simulate_collision’]

def	_dot_product(a,	b):

				#	…

def	simulate_collision(a,	b):

				#	…

Now,	I’d	like	to	provide	all	of	the	public	parts	of	this	API	as	a	set	of	attributes	that	are
available	on	the	mypackage	module.	This	will	allow	downstream	consumers	to	always
import	directly	from	mypackage	instead	of	importing	from	mypackage.models	or
mypackage.utils.	This	ensures	that	the	API	consumer’s	code	will	continue	to	work
even	if	the	internal	organization	of	mypackage	changes	(e.g.,	models.py	is	deleted).

To	do	this	with	Python	packages,	you	need	to	modify	the	__init__.py	file	in	the
mypackage	directory.	This	file	actually	becomes	the	contents	of	the	mypackage
module	when	it’s	imported.	Thus,	you	can	specify	an	explicit	API	for	mypackage	by
limiting	what	you	import	into	__init__.py.	Since	all	of	my	internal	modules	already
specify	__all__,	I	can	expose	the	public	interface	of	mypackage	by	simply	importing
everything	from	the	internal	modules	and	updating	__all__	accordingly.

#	__init__.py

__all__	=	[]

from	.	models	import	*

__all__	+=	models.__all__

from	.	utils	import	*

__all__	+=	utils.__all__



Here’s	a	consumer	of	the	API	that	directly	imports	from	mypackage	instead	of	accessing
the	inner	modules:
Click	here	to	view	code	image

#	api_consumer.py

from	mypackage	import	*

a	=	Projectile(1.5,	3)

b	=	Projectile(4,	1.7)

after_a,	after_b	=	simulate_collision(a,	b)

Notably,	internal-only	functions	like	mypackage.utils._dot_product	will	not	be
available	to	the	API	consumer	on	mypackage	because	they	weren’t	present	in
__all__.	Being	omitted	from	__all__	means	they	weren’t	imported	by	the	from
mypackage	import	*	statement.	The	internal-only	names	are	effectively	hidden.

This	whole	approach	works	great	when	it’s	important	to	provide	an	explicit,	stable	API.
However,	if	you’re	building	an	API	for	use	between	your	own	modules,	the	functionality
of	__all__	is	probably	unnecessary	and	should	be	avoided.	The	namespacing	provided
by	packages	is	usually	enough	for	a	team	of	programmers	to	collaborate	on	large	amounts
of	code	they	control	while	maintaining	reasonable	interface	boundaries.

Beware	of	import	*

Import	statements	like	from	x	import	y	are	clear	because	the	source	of	y	is
explicitly	the	x	package	or	module.	Wildcard	imports	like	from	foo	import	*
can	also	be	useful,	especially	in	interactive	Python	sessions.	However,	wildcards
make	code	more	difficult	to	understand.

	from	foo	import	*	hides	the	source	of	names	from	new	readers	of	the	code.	If
a	module	has	multiple	import	*	statements,	you’ll	need	to	check	all	of	the
referenced	modules	to	figure	out	where	a	name	was	defined.

	Names	from	import	*	statements	will	overwrite	any	conflicting	names	within	the
containing	module.	This	can	lead	to	strange	bugs	caused	by	accidental	interactions
between	your	code	and	overlapping	names	from	multiple	import	*	statements.

The	safest	approach	is	to	avoid	import	*	in	your	code	and	explicitly	import
names	with	the	from	x	import	y	style.

Things	to	Remember
	Packages	in	Python	are	modules	that	contain	other	modules.	Packages	allow	you	to
organize	your	code	into	separate,	non-conflicting	namespaces	with	unique	absolute
module	names.

	Simple	packages	are	defined	by	adding	an	__init__.py	file	to	a	directory	that
contains	other	source	files.	These	files	become	the	child	modules	of	the	directory’s
package.	Package	directories	may	also	contain	other	packages.

	You	can	provide	an	explicit	API	for	a	module	by	listing	its	publicly	visible	names	in



its	__all__	special	attribute.

	You	can	hide	a	package’s	internal	implementation	by	only	importing	public	names
in	the	package’s	__init__.py	file	or	by	naming	internal-only	members	with	a
leading	underscore.

	When	collaborating	within	a	single	team	or	on	a	single	codebase,	using	__all__
for	explicit	APIs	is	probably	unnecessary.

Item	51:	Define	a	Root	Exception	to	Insulate	Callers	from
APIs
When	you’re	defining	a	module’s	API,	the	exceptions	you	throw	are	just	as	much	a	part	of
your	interface	as	the	functions	and	classes	you	define	(see	Item	14:	“Prefer	Exceptions	to
Returning	None”).

Python	has	a	built-in	hierarchy	of	exceptions	for	the	language	and	standard	library.
There’s	a	draw	to	using	the	built-in	exception	types	for	reporting	errors	instead	of	defining
your	own	new	types.	For	example,	you	could	raise	a	ValueError	exception	whenever
an	invalid	parameter	is	passed	to	your	function.
Click	here	to	view	code	image

def	determine_weight(volume,	density):

				if	density	<=	0:

								raise	ValueError(‘Density	must	be	positive’)

				#	…

In	some	cases,	using	ValueError	makes	sense,	but	for	APIs	it’s	much	more	powerful	to
define	your	own	hierarchy	of	exceptions.	You	can	do	this	by	providing	a	root
Exception	in	your	module.	Then,	have	all	other	exceptions	raised	by	that	module
inherit	from	the	root	exception.
Click	here	to	view	code	image

#	my_module.py

class	Error(Exception):

				“““Base-class	for	all	exceptions	raised	by	this	module.”””

class	InvalidDensityError(Error):

				“““There	was	a	problem	with	a	provided	density	value.”””

Having	a	root	exception	in	a	module	makes	it	easy	for	consumers	of	your	API	to	catch	all
of	the	exceptions	that	you	raise	on	purpose.	For	example,	here	a	consumer	of	your	API
makes	a	function	call	with	a	try/except	statement	that	catches	your	root	exception:
Click	here	to	view	code	image

try:

				weight	=	my_module.determine_weight(1,	-1)

except	my_module.Error	as	e:

				logging.error(‘Unexpected	error:	%s’,	e)

This	try/except	prevents	your	API’s	exceptions	from	propagating	too	far	upward	and
breaking	the	calling	program.	It	insulates	the	calling	code	from	your	API.	This	insulation
has	three	helpful	effects.



First,	root	exceptions	let	callers	understand	when	there’s	a	problem	with	their	usage	of
your	API.	If	callers	are	using	your	API	properly,	they	should	catch	the	various	exceptions
that	you	deliberately	raise.	If	they	don’t	handle	such	an	exception,	it	will	propagate	all	the
way	up	to	the	insulating	except	block	that	catches	your	module’s	root	exception.	That
block	can	bring	the	exception	to	the	attention	of	the	API	consumer,	giving	them	a	chance
to	add	proper	handling	of	the	exception	type.
Click	here	to	view	code	image

try:

				weight	=	my_module.determine_weight(1,	-1)

except	my_module.InvalidDensityError:

				weight	=	0

except	my_module.Error	as	e:

				logging.error(‘Bug	in	the	calling	code:	%s’,	e)

The	second	advantage	of	using	root	exceptions	is	that	they	can	help	find	bugs	in	your	API
module’s	code.	If	your	code	only	deliberately	raises	exceptions	that	you	define	within
your	module’s	hierarchy,	then	all	other	types	of	exceptions	raised	by	your	module	must	be
the	ones	that	you	didn’t	intend	to	raise.	These	are	bugs	in	your	API’s	code.

Using	the	try/except	statement	above	will	not	insulate	API	consumers	from	bugs	in
your	API	module’s	code.	To	do	that,	the	caller	needs	to	add	another	except	block	that
catches	Python’s	base	Exception	class.	This	allows	the	API	consumer	to	detect	when
there’s	a	bug	in	the	API	module’s	implementation	that	needs	to	be	fixed.
Click	here	to	view	code	image

try:

				weight	=	my_module.determine_weight(1,	-1)

except	my_module.InvalidDensityError:

				weight	=	0

except	my_module.Error	as	e:

				logging.error(‘Bug	in	the	calling	code:	%s’,	e)

except	Exception	as	e:

				logging.error(‘Bug	in	the	API	code:	%s’,	e)

				raise

The	third	impact	of	using	root	exceptions	is	future-proofing	your	API.	Over	time,	you	may
want	to	expand	your	API	to	provide	more	specific	exceptions	in	certain	situations.	For
example,	you	could	add	an	Exception	subclass	that	indicates	the	error	condition	of
supplying	negative	densities.
Click	here	to	view	code	image

#	my_module.py

class	NegativeDensityError(InvalidDensityError):

				“““A	provided	density	value	was	negative.”””

def	determine_weight(volume,	density):

				if	density	<	0:

								raise	NegativeDensityError

The	calling	code	will	continue	to	work	exactly	as	before	because	it	already	catches
InvalidDensityError	exceptions	(the	parent	class	of
NegativeDensityError).	In	the	future,	the	caller	could	decide	to	special-case	the
new	type	of	exception	and	change	its	behavior	accordingly.



Click	here	to	view	code	image

try:

				weight	=	my_module.determine_weight(1,	-1)

except	my_module.NegativeDensityError	as	e:

				raise	ValueError(‘Must	supply	non-negative	density’)	from	e

except	my_module.InvalidDensityError:

				weight	=	0

except	my_module.Error	as	e:

				logging.error(‘Bug	in	the	calling	code:	%s’,	e)

except	Exception	as	e:

				logging.error(‘Bug	in	the	API	code:	%s’,	e)

				raise

You	can	take	API	future-proofing	further	by	providing	a	broader	set	of	exceptions	directly
below	the	root	exception.	For	example,	imagine	you	had	one	set	of	errors	related	to
calculating	weights,	another	related	to	calculating	volume,	and	a	third	related	to
calculating	density.
Click	here	to	view	code	image

#	my_module.py

class	WeightError(Error):

				“““Base-class	for	weight	calculation	errors.”””

class	VolumeError(Error):

				“““Base-class	for	volume	calculation	errors.”””

class	DensityError(Error):

				“““Base-class	for	density	calculation	errors.”””

Specific	exceptions	would	inherit	from	these	general	exceptions.	Each	intermediate
exception	acts	as	its	own	kind	of	root	exception.	This	makes	it	easier	to	insulate	layers	of
calling	code	from	API	code	based	on	broad	functionality.	This	is	much	better	than	having
all	callers	catch	a	long	list	of	very	specific	Exception	subclasses.

Things	to	Remember
	Defining	root	exceptions	for	your	modules	allows	API	consumers	to	insulate
themselves	from	your	API.

	Catching	root	exceptions	can	help	you	find	bugs	in	code	that	consumes	an	API.

	Catching	the	Python	Exception	base	class	can	help	you	find	bugs	in	API
implementations.

	Intermediate	root	exceptions	let	you	add	more	specific	types	of	exceptions	in	the
future	without	breaking	your	API	consumers.

Item	52:	Know	How	to	Break	Circular	Dependencies
Inevitably,	while	you’re	collaborating	with	others,	you’ll	find	a	mutual	interdependency
between	modules.	It	can	even	happen	while	you	work	by	yourself	on	the	various	parts	of	a
single	program.

For	example,	say	you	want	your	GUI	application	to	show	a	dialog	box	for	choosing	where
to	save	a	document.	The	data	displayed	by	the	dialog	could	be	specified	through



arguments	to	your	event	handlers.	But	the	dialog	also	needs	to	read	global	state,	like	user
preferences,	to	know	how	to	render	properly.

Here,	I	define	a	dialog	that	retrieves	the	default	document	save	location	from	global
preferences:
Click	here	to	view	code	image

#	dialog.py

import	app

class	Dialog(object):

				def	__init__(self,	save_dir):

								self.save_dir	=	save_dir

				#	…

save_dialog	=	Dialog(app.prefs.get(‘save_dir’))

def	show():

				#	…

The	problem	is	that	the	app	module	that	contains	the	prefs	object	also	imports	the
dialog	class	in	order	to	show	the	dialog	on	program	start.

#	app.py

import	dialog

class	Prefs(object):

				#	…

				def	get(self,	name):

								#	…

prefs	=	Prefs()

dialog.show()

It’s	a	circular	dependency.	If	you	try	to	use	the	app	module	from	your	main	program,
you’ll	get	an	exception	when	you	import	it.
Click	here	to	view	code	image

Traceback	(most	recent	call	last):

		File	“main.py”,	line	4,	in	<module>

				import	app

		File	“app.py”,	line	4,	in	<module>

				import	dialog

		File	“dialog.py”,	line	16,	in	<module>

				save_dialog	=	Dialog(app.prefs.get(‘save_dir’))

AttributeError:	‘module’	object	has	no	attribute	‘prefs’

To	understand	what’s	happening	here,	you	need	to	know	the	details	of	Python’s	import
machinery.	When	a	module	is	imported,	here’s	what	Python	actually	does	in	depth-first
order:

1.	Searches	for	your	module	in	locations	from	sys.path

2.	Loads	the	code	from	the	module	and	ensures	that	it	compiles

3.	Creates	a	corresponding	empty	module	object

4.	Inserts	the	module	into	sys.modules



5.	Runs	the	code	in	the	module	object	to	define	its	contents

The	problem	with	a	circular	dependency	is	that	the	attributes	of	a	module	aren’t	defined
until	the	code	for	those	attributes	has	executed	(after	step	#5).	But	the	module	can	be
loaded	with	the	import	statement	immediately	after	it’s	inserted	into	sys.modules
(after	step	#4).

In	the	example	above,	the	app	module	imports	dialog	before	defining	anything.	Then,
the	dialog	module	imports	app.	Since	app	still	hasn’t	finished	running—it’s	currently
importing	dialog—the	app	module	is	just	an	empty	shell	(from	step	#4).	The
AttributeError	is	raised	(during	step	#5	for	dialog)	because	the	code	that	defines
prefs	hasn’t	run	yet	(step	#5	for	app	isn’t	complete).

The	best	solution	to	this	problem	is	to	refactor	your	code	so	that	the	prefs	data	structure
is	at	the	bottom	of	the	dependency	tree.	Then,	both	app	and	dialog	can	import	the	same
utility	module	and	avoid	any	circular	dependencies.	But	such	a	clear	division	isn’t	always
possible	or	could	require	too	much	refactoring	to	be	worth	the	effort.

There	are	three	other	ways	to	break	circular	dependencies.

Reordering	Imports
The	first	approach	is	to	change	the	order	of	imports.	For	example,	if	you	import	the
dialog	module	toward	the	bottom	of	the	app	module,	after	its	contents	have	run,	the
AttributeError	goes	away.

#	app.py

class	Prefs(object):

				#	…

prefs	=	Prefs()

import	dialog		#	Moved

dialog.show()

This	works	because,	when	the	dialog	module	is	loaded	late,	its	recursive	import	of	app
will	find	that	app.prefs	has	already	been	defined	(step	#5	is	mostly	done	for	app).

Although	this	avoids	the	AttributeError,	it	goes	against	the	PEP	8	style	guide	(see
Item	2:	“Follow	the	PEP	8	Style	Guide”).	The	style	guide	suggests	that	you	always	put
imports	at	the	top	of	your	Python	files.	This	makes	your	module’s	dependencies	clear	to
new	readers	of	the	code.	It	also	ensures	that	any	module	you	depend	on	is	in	scope	and
available	to	all	the	code	in	your	module.

Having	imports	later	in	a	file	can	be	brittle	and	can	cause	small	changes	in	the	ordering	of
your	code	to	break	the	module	entirely.	Thus,	you	should	avoid	import	reordering	to	solve
your	circular	dependency	issues.



Import,	Configure,	Run
A	second	solution	to	the	circular	imports	problem	is	to	have	your	modules	minimize	side
effects	at	import	time.	You	have	your	modules	only	define	functions,	classes,	and
constants.	You	avoid	actually	running	any	functions	at	import	time.	Then,	you	have	each
module	provide	a	configure	function	that	you	call	once	all	other	modules	have
finished	importing.	The	purpose	of	configure	is	to	prepare	each	module’s	state	by
accessing	the	attributes	of	other	modules.	You	run	configure	after	all	modules	have
been	imported	(step	#5	is	complete),	so	all	attributes	must	be	defined.

Here,	I	redefine	the	dialog	module	to	only	access	the	prefs	object	when	configure
is	called:
Click	here	to	view	code	image

#	dialog.py

import	app

class	Dialog(object):

				#	…

save_dialog	=	Dialog()

def	show():

				#	…

def	configure():

				save_dialog.save_dir	=	app.prefs.get(‘save_dir’)

I	also	redefine	the	app	module	to	not	run	any	activities	on	import.
#	app.py

import	dialog

class	Prefs(object):

				#	…

prefs	=	Prefs()

def	configure():

				#	…

Finally,	the	main	module	has	three	distinct	phases	of	execution:	import	everything,
configure	everything,	and	run	the	first	activity.

#	main.py

import	app

import	dialog

app.configure()

dialog.configure()

dialog.show()

This	works	well	in	many	situations	and	enables	patterns	like	dependency	injection.	But
sometimes	it	can	be	difficult	to	structure	your	code	so	that	an	explicit	configure	step	is
possible.	Having	two	distinct	phases	within	a	module	can	also	make	your	code	harder	to



read	because	it	separates	the	definition	of	objects	from	their	configuration.

Dynamic	Import
The	third—and	often	simplest—solution	to	the	circular	imports	problem	is	to	use	an
import	statement	within	a	function	or	method.	This	is	called	a	dynamic	import	because
the	module	import	happens	while	the	program	is	running,	not	while	the	program	is	first
starting	up	and	initializing	its	modules.

Here,	I	redefine	the	dialog	module	to	use	a	dynamic	import.	The	dialog.show
function	imports	the	app	module	at	runtime	instead	of	the	dialog	module	importing
app	at	initialization	time.
Click	here	to	view	code	image

#	dialog.py

class	Dialog(object):

				#	…

save_dialog	=	Dialog()

def	show():

				import	app		#	Dynamic	import

				save_dialog.save_dir	=	app.prefs.get(‘save_dir’)

				#	…

The	app	module	can	now	be	the	same	as	it	was	in	the	original	example.	It	imports
dialog	at	the	top	and	calls	dialog.show	at	the	bottom.

#	app.py

import	dialog

class	Prefs(object):

				#	…

prefs	=	Prefs()

dialog.show()

This	approach	has	a	similar	effect	to	the	import,	configure,	and	run	steps	from	before.	The
difference	is	that	this	requires	no	structural	changes	to	the	way	the	modules	are	defined
and	imported.	You’re	simply	delaying	the	circular	import	until	the	moment	you	must
access	the	other	module.	At	that	point,	you	can	be	pretty	sure	that	all	other	modules	have
already	been	initialized	(step	#5	is	complete	for	everything).

In	general,	it’s	good	to	avoid	dynamic	imports	like	this.	The	cost	of	the	import	statement
is	not	negligible	and	can	be	especially	bad	in	tight	loops.	By	delaying	execution,	dynamic
imports	also	set	you	up	for	surprising	failures	at	runtime,	such	as	SyntaxError
exceptions	long	after	your	program	has	started	running	(see	Item	56:	“Test	Everything
with	unittest”	for	how	to	avoid	that).	However,	these	downsides	are	often	better	than
the	alternative	of	restructuring	your	entire	program.

Things	to	Remember
	Circular	dependencies	happen	when	two	modules	must	call	into	each	other	at	import
time.	They	can	cause	your	program	to	crash	at	startup.



	The	best	way	to	break	a	circular	dependency	is	refactoring	mutual	dependencies	into
a	separate	module	at	the	bottom	of	the	dependency	tree.

	Dynamic	imports	are	the	simplest	solution	for	breaking	a	circular	dependency
between	modules	while	minimizing	refactoring	and	complexity.

Item	53:	Use	Virtual	Environments	for	Isolated	and
Reproducible	Dependencies
Building	larger	and	more	complex	programs	often	leads	you	to	rely	on	various	packages
from	the	Python	community	(see	Item	48:	“Know	Where	to	Find	Community-Built
Modules”).	You’ll	find	yourself	running	pip	to	install	packages	like	pytz,	numpy,	and
many	others.

The	problem	is	that,	by	default,	pip	installs	new	packages	in	a	global	location.	That
causes	all	Python	programs	on	your	system	to	be	affected	by	these	installed	modules.	In
theory,	this	shouldn’t	be	an	issue.	If	you	install	a	package	and	never	import	it,	how
could	it	affect	your	programs?

The	trouble	comes	from	transitive	dependencies:	the	packages	that	the	packages	you
install	depend	on.	For	example,	you	can	see	what	the	Sphinx	package	depends	on	after
installing	it	by	asking	pip.
Click	here	to	view	code	image

$	pip3	show	Sphinx

–

Name:	Sphinx

Version:	1.2.2

Location:	/usr/local/lib/python3.4/site-packages

Requires:	docutils,	Jinja2,	Pygments

If	you	install	another	package	like	flask,	you	can	see	that	it,	too,	depends	on	the
Jinja2	package.
Click	here	to	view	code	image

$	pip3	show	flask

–

Name:	Flask

Version:	0.10.1

Location:	/usr/local/lib/python3.4/site-packages

Requires:	Werkzeug,	Jinja2,	itsdangerous

The	conflict	arises	as	Sphinx	and	flask	diverge	over	time.	Perhaps	right	now	they	both
require	the	same	version	of	Jinja2	and	everything	is	fine.	But	six	months	or	a	year	from
now,	Jinja2	may	release	a	new	version	that	makes	breaking	changes	to	users	of	the
library.	If	you	update	your	global	version	of	Jinja2	with	pip	install	--
upgrade,	you	may	find	that	Sphinx	breaks	while	flask	keeps	working.

The	cause	of	this	breakage	is	that	Python	can	only	have	a	single	global	version	of	a
module	installed	at	a	time.	If	one	of	your	installed	packages	must	use	the	new	version	and
another	package	must	use	the	old	version,	your	system	isn’t	going	to	work	properly.

Such	breakage	can	even	happen	when	package	maintainers	try	their	best	to	preserve	API



compatibility	between	releases	(see	Item	50:	“Use	Packages	to	Organize	Modules	and
Provide	Stable	APIs”).	New	versions	of	a	library	can	subtly	change	behaviors	that	API-
consuming	code	relies	on.	Users	on	a	system	may	upgrade	one	package	to	a	new	version
but	not	others,	which	could	dependencies.	There’s	a	constant	risk	of	the	ground	moving
beneath	your	feet.

These	difficulties	are	magnified	when	you	collaborate	with	other	developers	who	do	their
work	on	separate	computers.	It’s	reasonable	to	assume	that	the	versions	of	Python	and
global	packages	they	have	installed	on	their	machines	will	be	slightly	different	than	your
own.	This	can	cause	frustrating	situations	where	a	codebase	works	perfectly	on	one
programmer’s	machine	and	is	completely	broken	on	another’s.

The	solution	to	all	of	these	problems	is	a	tool	called	pyvenv,	which	provides	virtual
environments.	Since	Python	3.4,	the	pyvenv	command-line	tool	is	available	by	default
along	with	the	Python	installation	(it’s	also	accessible	with	python	-m	venv).	Prior
versions	of	Python	require	installing	a	separate	package	(with	pip	install
virtualenv)	and	using	a	command-line	tool	called	virtualenv.

pyvenv	allows	you	to	create	isolated	versions	of	the	Python	environment.	Using
pyvenv,	you	can	have	many	different	versions	of	the	same	package	installed	on	the	same
system	at	the	same	time	without	conflicts.	This	lets	you	work	on	many	different	projects
and	use	many	different	tools	on	the	same	computer.

pyvenv	does	this	by	installing	explicit	versions	of	packages	and	their	dependencies	into
completely	separate	directory	structures.	This	makes	it	possible	to	reproduce	a	Python
environment	that	you	know	will	work	with	your	code.	It’s	a	reliable	way	to	avoid
surprising	breakages.

The	pyvenv	Command
Here’s	a	quick	tutorial	on	how	to	use	pyvenv	effectively.	Before	using	the	tool,	it’s
important	to	note	the	meaning	of	the	python3	command-line	on	your	system.	On	my
computer,	python3	is	located	in	the	/usr/local/bin	directory	and	evaluates	to
version	3.4.2	(see	Item	1:	“Know	Which	Version	of	Python	You’re	Using”).

$	which	python3

/usr/local/bin/python3

$	python3	—version

Python	3.4.2

To	demonstrate	the	setup	of	my	environment,	I	can	test	that	running	a	command	to	import
the	pytz	module	doesn’t	cause	an	error.	This	works	because	I	already	have	the	pytz
package	installed	as	a	global	module.

$	python3	-c	‘import	pytz’

$

Now,	I	use	pyvenv	to	create	a	new	virtual	environment	called	myproject.	Each	virtual
environment	must	live	in	its	own	unique	directory.	The	result	of	the	command	is	a	tree	of
directories	and	files.
Click	here	to	view	code	image



$	pyvenv	/tmp/myproject

$	cd	/tmp/myproject

$	ls

bin					include					lib					pyvenv.cfg

To	start	using	the	virtual	environment,	I	use	the	source	command	from	my	shell	on	the
bin/activate	script.	activate	modifies	all	of	my	environment	variables	to	match
the	virtual	environment.	It	also	updates	my	command-line	prompt	to	include	the	virtual
environment	name	('myproject')	to	make	it	extremely	clear	what	I’m	working	on.

$	source	bin/activate

(myproject)$

After	activation,	you	can	see	that	the	path	to	the	python3	command-line	tool	has	moved
to	within	the	virtual	environment	directory.
Click	here	to	view	code	image

(myproject)$	which	python3

/tmp/myproject/bin/python3

(myproject)$	ls	-l	/tmp/myproject/bin/python3

…	->	/tmp/myproject/bin/python3.4

(myproject)$	ls	-l	/tmp/myproject/bin/python3.4

…	->	/usr/local/bin/python3.4

This	ensures	that	changes	to	the	outside	system	will	not	affect	the	virtual	environment.
Even	if	the	outer	system	upgrades	its	default	python3	to	version	3.5,	my	virtual
environment	will	still	explicitly	point	to	version	3.4.

The	virtual	environment	I	created	with	pyvenv	starts	with	no	packages	installed	except
for	pip	and	setuptools.	Trying	to	use	the	pytz	package	that	was	installed	as	a	global
module	in	the	outside	system	will	fail	because	it’s	unknown	to	the	virtual	environment.
Click	here	to	view	code	image

(myproject)$	python3	-c	‘import	pytz’

Traceback	(most	recent	call	last):

		File	“<string>”,	line	1,	in	<module>

ImportError:	No	module	named	‘pytz’

I	can	use	pip	to	install	the	pytz	module	into	my	virtual	environment.
Click	here	to	view	code	image

(myproject)$	pip3	install	pytz

Once	it’s	installed,	I	can	verify	that	it’s	working	with	the	same	test	import	command.
Click	here	to	view	code	image

(myproject)$	python3	-c	‘import	pytz’

(myproject)$

When	you’re	done	with	a	virtual	environment	and	want	to	go	back	to	your	default	system,
you	use	the	deactivate	command.	This	restores	your	environment	to	the	system
defaults,	including	the	location	of	the	python3	command-line	tool.

(myproject)$	deactivate

$	which	python3

/usr/local/bin/python3

If	you	ever	want	to	work	in	the	myproject	environment	again,	you	can	just	run



source	bin/activate	in	the	directory	like	before.

Reproducing	Dependencies
Once	you	have	a	virtual	environment,	you	can	continue	installing	packages	with	pip	as
you	need	them.	Eventually,	you	may	want	to	copy	your	environment	somewhere	else.	For
example,	say	you	want	to	reproduce	your	development	environment	on	a	production
server.	Or	maybe	you	want	to	clone	someone	else’s	environment	on	your	own	machine	so
you	can	run	their	code.

pyvenv	makes	these	situations	easy.	You	can	use	the	pip	freeze	command	to	save	all
of	your	explicit	package	dependencies	into	a	file.	By	convention,	this	file	is	named
requirements.txt.
Click	here	to	view	code	image

(myproject)$	pip3	freeze	>	requirements.txt

(myproject)$	cat	requirements.txt

numpy==1.8.2

pytz==2014.4

requests==2.3.0

Now,	imagine	that	you’d	like	to	have	another	virtual	environment	that	matches	the
myproject	environment.	You	can	create	a	new	directory	like	before	using	pyvenv	and
activate	it.

$	pyvenv	/tmp/otherproject

$	cd	/tmp/otherproject

$	source	bin/activate

(otherproject)$

The	new	environment	will	have	no	extra	packages	installed.
(otherproject)$	pip3	list

pip	(1.5.6)

setuptools	(2.1)

You	can	install	all	of	the	packages	from	the	first	environment	by	running	pip	install
on	the	requirements.txt	that	you	generated	with	the	pip	freeze	command.
Click	here	to	view	code	image

(otherproject)$	pip3	install	-r	/tmp/myproject/requirements.txt

This	command	will	crank	along	for	a	little	while	as	it	retrieves	and	installs	all	of	the
packages	required	to	reproduce	the	first	environment.	Once	it’s	done,	listing	the	set	of
installed	packages	in	the	second	virtual	environment	will	produce	the	same	list	of
dependencies	found	in	the	first	virtual	environment.

(otherproject)$	pip	list

numpy	(1.8.2)

pip	(1.5.6)

pytz	(2014.4)

requests	(2.3.0)

setuptools	(2.1)

Using	a	requirements.txt	file	is	ideal	for	collaborating	with	others	through	a
revision	control	system.	You	can	commit	changes	to	your	code	at	the	same	time	you



update	your	list	of	package	dependencies,	ensuring	that	they	move	in	lockstep.

The	gotcha	with	virtual	environments	is	that	moving	them	breaks	everything	because	all
of	the	paths,	like	python3,	are	hard-coded	to	the	environment’s	install	directory.	But	that
doesn’t	matter.	The	whole	purpose	of	virtual	environments	is	to	make	it	easy	to	reproduce
the	same	setup.	Instead	of	moving	a	virtual	environment	directory,	just	freeze	the	old
one,	create	a	new	one	somewhere	else,	and	reinstall	everything	from	the
requirements.txt	file.

Things	to	Remember
	Virtual	environments	allow	you	to	use	pip	to	install	many	different	versions	of	the
same	package	on	the	same	machine	without	conflicts.

	Virtual	environments	are	created	with	pyvenv,	enabled	with	source
bin/activate,	and	disabled	with	deactivate.

	You	can	dump	all	of	the	requirements	of	an	environment	with	pip	freeze.	You
can	reproduce	the	environment	by	supplying	the	requirements.txt	file	to	pip
install	-r.

	In	versions	of	Python	before	3.4,	the	pyvenv	tool	must	be	downloaded	and
installed	separately.	The	command-line	tool	is	called	virtualenv	instead	of
pyvenv.



8.	Production

Putting	a	Python	program	to	use	requires	moving	it	from	a	development	environment	to	a
production	environment.	Supporting	disparate	configurations	like	this	can	be	a	challenge.
Making	programs	that	are	dependable	in	multiple	situations	is	just	as	important	as	making
programs	with	correct	functionality.

The	goal	is	to	productionize	your	Python	programs	and	make	them	bulletproof	while
they’re	in	use.	Python	has	built-in	modules	that	aid	in	hardening	your	programs.	It
provides	facilities	for	debugging,	optimizing,	and	testing	to	maximize	the	quality	and
performance	of	your	programs	at	runtime.

Item	54:	Consider	Module-Scoped	Code	to	Configure
Deployment	Environments
A	deployment	environment	is	a	configuration	in	which	your	program	runs.	Every	program
has	at	least	one	deployment	environment,	the	production	environment.	The	goal	of	writing
a	program	in	the	first	place	is	to	put	it	to	work	in	the	production	environment	and	achieve
some	kind	of	outcome.

Writing	or	modifying	a	program	requires	being	able	to	run	it	on	the	computer	you	use	for
developing.	The	configuration	of	your	development	environment	may	be	much	different
from	your	production	environment.	For	example,	you	may	be	writing	a	program	for
supercomputers	using	a	Linux	workstation.

Tools	like	pyvenv	(see	Item	53:	“Use	Virtual	Environments	for	Isolated	and
Reproducible	Dependencies”)	make	it	easy	to	ensure	that	all	environments	have	the	same
Python	packages	installed.	The	trouble	is	that	production	environments	often	require	many
external	assumptions	that	are	hard	to	reproduce	in	development	environments.

For	example,	say	you	want	to	run	your	program	in	a	web	server	container	and	give	it
access	to	a	database.	This	means	that	every	time	you	want	to	modify	your	program’s	code,
you	need	to	run	a	server	container,	the	database	must	be	set	up	properly,	and	your	program
needs	the	password	for	access.	That’s	a	very	high	cost	if	all	you’re	trying	to	do	is	verify
that	a	one-line	change	to	your	program	works	correctly.

The	best	way	to	work	around	these	issues	is	to	override	parts	of	your	program	at	startup
time	to	provide	different	functionality	depending	on	the	deployment	environment.	For
example,	you	could	have	two	different	__main__	files,	one	for	production	and	one	for
development.
Click	here	to	view	code	image

#	dev_main.py

TESTING	=	True

import	db_connection

db	=	db_connection.Database()

#	prod_main.py

TESTING	=	False

import	db_connection



db	=	db_connection.Database()

The	only	difference	between	the	two	files	is	the	value	of	the	TESTING	constant.	Other
modules	in	your	program	can	then	import	the	__main__	module	and	use	the	value	of
TESTING	to	decide	how	they	define	their	own	attributes.
Click	here	to	view	code	image

#	db_connection.py

import	__main__

class	TestingDatabase(object):

				#	…

class	RealDatabase(object):

				#	…

if	__main__.TESTING:

				Database	=	TestingDatabase

else:

				Database	=	RealDatabase

The	key	behavior	to	notice	here	is	that	code	running	in	module	scope—not	inside	any
function	or	method—is	just	normal	Python	code.	You	can	use	an	if	statement	at	the
module	level	to	decide	how	the	module	will	define	names.	This	makes	it	easy	to	tailor
modules	to	your	various	deployment	environments.	You	can	avoid	having	to	reproduce
costly	assumptions	like	database	configurations	when	they	aren’t	needed.	You	can	inject
fake	or	mock	implementations	that	ease	interactive	development	and	testing	(see	Item	56:
“Test	Everything	with	unittest”).

Note

Once	your	deployment	environments	get	complicated,	you	should	consider	moving
them	out	of	Python	constants	(like	TESTING)	and	into	dedicated	configuration
files.	Tools	like	the	configparser	built-in	module	let	you	maintain	production
configurations	separate	from	code,	a	distinction	that’s	crucial	for	collaborating	with
an	operations	team.

This	approach	can	be	used	for	more	than	working	around	external	assumptions.	For
example,	if	you	know	that	your	program	must	work	differently	based	on	its	host	platform,
you	can	inspect	the	sys	module	before	defining	top-level	constructs	in	a	module.
Click	here	to	view	code	image

#	db_connection.py

import	sys

class	Win32Database(object):

				#	…

class	PosixDatabase(object):

				#	…

if	sys.platform.startswith(‘win32’):

				Database	=	Win32Database

else:



				Database	=	PosixDatabase

Similarly,	you	can	use	environment	variables	from	os.environ	to	guide	your	module
definitions.

Things	to	Remember
	Programs	often	need	to	run	in	multiple	deployment	environments	that	each	have
unique	assumptions	and	configurations.

	You	can	tailor	a	module’s	contents	to	different	deployment	environments	by	using
normal	Python	statements	in	module	scope.

	Module	contents	can	be	the	product	of	any	external	condition,	including	host
introspection	through	the	sys	and	os	modules.

Item	55:	Use	repr	Strings	for	Debugging	Output
When	debugging	a	Python	program,	the	print	function	(or	output	via	the	logging
built-in	module)	will	get	you	surprisingly	far.	Python	internals	are	often	easy	to	access	via
plain	attributes	(see	Item	27:	“Prefer	Public	Attributes	Over	Private	Ones”).	All	you	need
to	do	is	print	how	the	state	of	your	program	changes	while	it	runs	and	see	where	it	goes
wrong.

The	print	function	outputs	a	human-readable	string	version	of	whatever	you	supply	it.
For	example,	printing	a	basic	string	will	print	the	contents	of	the	string	without	the
surrounding	quote	characters.

print(‘foo	bar’)

>>>

foo	bar

This	is	equivalent	to	using	the	'%s'	format	string	and	the	%	operator.
print(‘%s’	%	‘foo	bar’)

>>>

foo	bar

The	problem	is	that	the	human-readable	string	for	a	value	doesn’t	make	it	clear	what	the
actual	type	of	the	value	is.	For	example,	notice	how	in	the	default	output	of	print	you
can’t	distinguish	between	the	types	of	the	number	5	and	the	string	'5'.

print(5)

print(‘5’)

>>>

5

5

If	you’re	debugging	a	program	with	print,	these	type	differences	matter.	What	you
almost	always	want	while	debugging	is	to	see	the	repr	version	of	an	object.	The	repr
built-in	function	returns	the	printable	representation	of	an	object,	which	should	be	its	most
clearly	understandable	string	representation.	For	built-in	types,	the	string	returned	by
repr	is	a	valid	Python	expression.



a	=	‘\x07’

print(repr(a))

>>>

‘\x07’

Passing	the	value	from	repr	to	the	eval	built-in	function	should	result	in	the	same
Python	object	you	started	with	(of	course,	in	practice,	you	should	only	use	eval	with
extreme	caution).

b	=	eval(repr(a))

assert	a	==	b

When	you’re	debugging	with	print,	you	should	repr	the	value	before	printing	to
ensure	that	any	difference	in	types	is	clear.

print(repr(5))

print(repr(‘5’))

>>>

5

‘5’

This	is	equivalent	to	using	the	'%r'	format	string	and	the	%	operator.
print(‘%r’	%	5)

print(‘%r’	%	‘5’)

>>>

5

‘5’

For	dynamic	Python	objects,	the	default	human-readable	string	value	is	the	same	as	the
repr	value.	This	means	that	passing	a	dynamic	object	to	print	will	do	the	right	thing,
and	you	don’t	need	to	explicitly	call	repr	on	it.	Unfortunately,	the	default	value	of	repr
for	object	instances	isn’t	especially	helpful.	For	example,	here	I	define	a	simple	class
and	then	print	its	value:
Click	here	to	view	code	image

class	OpaqueClass(object):

				def	__init__(self,	x,	y):

								self.x	=	x

								self.y	=	y

obj	=	OpaqueClass(1,	2)

print(obj)

>>>

<__main__.OpaqueClass	object	at	0x107880ba8>

This	output	can’t	be	passed	to	the	eval	function,	and	it	says	nothing	about	the	instance
fields	of	the	object.

There	are	two	solutions	to	this	problem.	If	you	have	control	of	the	class,	you	can	define
your	own	__repr__	special	method	that	returns	a	string	containing	the	Python
expression	that	recreates	the	object.	Here,	I	define	that	function	for	the	class	above:
Click	here	to	view	code	image



class	BetterClass(object):

				def	__init__(self,	x,	y):

								#	…

				def	__repr__(self):

								return	‘BetterClass(%d,	%d)’	%	(self.x,	self.y)

Now,	the	repr	value	is	much	more	useful.
obj	=	BetterClass(1,	2)

print(obj)

>>>

BetterClass(1,	2)

When	you	don’t	have	control	over	the	class	definition,	you	can	reach	into	the	object’s
instance	dictionary,	which	is	stored	in	the	__dict__	attribute.	Here,	I	print	out	the
contents	of	an	OpaqueClass	instance:

obj	=	OpaqueClass(4,	5)

print(obj.__dict__)

>>>

{‘y’:	5,	‘x’:	4}

Things	to	Remember
	Calling	print	on	built-in	Python	types	will	produce	the	human-readable	string
version	of	a	value,	which	hides	type	information.

	Calling	repr	on	built-in	Python	types	will	produce	the	printable	string	version	of	a
value.	These	repr	strings	could	be	passed	to	the	eval	built-in	function	to	get	back
the	original	value.

	%s	in	format	strings	will	produce	human-readable	strings	like	str.	%r	will	produce
printable	strings	like	repr.

	You	can	define	the	__repr__	method	to	customize	the	printable	representation	of
a	class	and	provide	more	detailed	debugging	information.

	You	can	reach	into	any	object’s	__dict__	attribute	to	view	its	internals.

Item	56:	Test	Everything	with	unittest
Python	doesn’t	have	static	type	checking.	There’s	nothing	in	the	compiler	that	will	ensure
that	your	program	will	work	when	you	run	it.	With	Python	you	don’t	know	whether	the
functions	your	program	calls	will	be	defined	at	runtime,	even	when	their	existence	is
evident	in	the	source	code.	This	dynamic	behavior	is	a	blessing	and	a	curse.

The	large	numbers	of	Python	programmers	out	there	say	it’s	worth	it	because	of	the
productivity	gained	from	the	resulting	brevity	and	simplicity.	But	most	people	have	heard
at	least	one	horror	story	about	Python	in	which	a	program	encountered	a	boneheaded	error
at	runtime.

One	of	the	worst	examples	I’ve	heard	is	when	a	SyntaxError	was	raised	in	production



as	a	side	effect	of	a	dynamic	import	(see	Item	52:	“Know	How	to	Break	Circular
Dependencies”).	The	programmer	I	know	who	was	hit	by	this	surprising	occurrence	has
since	ruled	out	using	Python	ever	again.

But	I	have	to	wonder,	why	wasn’t	the	code	tested	before	the	program	was	deployed	to
production?	Type	safety	isn’t	everything.	You	should	always	test	your	code,	regardless	of
what	language	it’s	written	in.	However,	I’ll	admit	that	the	big	difference	between	Python
and	many	other	languages	is	that	the	only	way	to	have	any	confidence	in	a	Python
program	is	by	writing	tests.	There	is	no	veil	of	static	type	checking	to	make	you	feel	safe.

Luckily,	the	same	dynamic	features	that	prevent	static	type	checking	in	Python	also	make
it	extremely	easy	to	write	tests	for	your	code.	You	can	use	Python’s	dynamic	nature	and
easily	overridable	behaviors	to	implement	tests	and	ensure	that	your	programs	work	as
expected.

You	should	think	of	tests	as	an	insurance	policy	on	your	code.	Good	tests	give	you
confidence	that	your	code	is	correct.	If	you	refactor	or	expand	your	code,	tests	make	it
easy	to	identify	how	behaviors	have	changed.	It	sounds	counter-intuitive,	but	having	good
tests	actually	makes	it	easier	to	modify	Python	code,	not	harder.

The	simplest	way	to	write	tests	is	to	use	the	unittest	built-in	module.	For	example,	say
you	have	the	following	utility	function	defined	in	utils.py:
Click	here	to	view	code	image

#	utils.py

def	to_str(data):

				if	isinstance(data,	str):

								return	data

				elif	isinstance(data,	bytes):

								return	data.decode(‘utf-8’)

				else:

								raise	TypeError(‘Must	supply	str	or	bytes,	‘

																								‘found:	%r’	%	data)

To	define	tests,	I	create	a	second	file	named	test_utils.py	or	utils_test.py
that	contains	tests	for	each	behavior	I	expect.
Click	here	to	view	code	image

#	utils_test.py

from	unittest	import	TestCase,	main

from	utils	import	to_str

class	UtilsTestCase(TestCase):

				def	test_to_str_bytes(self):

								self.assertEqual(‘hello’,	to_str(b’hello’))

				def	test_to_str_str(self):

								self.assertEqual(‘hello’,	to_str(‘hello’))

				def	test_to_str_bad(self):

								self.assertRaises(TypeError,	to_str,	object())

if	__name__	==	‘__main__’:

				main()

Tests	are	organized	into	TestCase	classes.	Each	test	is	a	method	beginning	with	the



word	test.	If	a	test	method	runs	without	raising	any	kind	of	Exception	(including
AssertionError	from	assert	statements),	then	the	test	is	considered	to	have	passed
successfully.

The	TestCase	class	provides	helper	methods	for	making	assertions	in	your	tests,	such	as
assertEqual	for	verifying	equality,	assertTrue	for	verifying	Boolean	expressions,
and	assertRaises	for	verifying	that	exceptions	are	raised	when	appropriate	(see
help(TestCase)	for	more).	You	can	define	your	own	helper	methods	in	TestCase
subclasses	to	make	your	tests	more	readable;	just	ensure	that	your	method	names	don’t
begin	with	the	word	test.

Note

Another	common	practice	when	writing	tests	is	to	use	mock	functions	and	classes
to	stub	out	certain	behaviors.	For	this	purpose,	Python	3	provides	the
unittest.mock	built-in	module,	which	is	also	available	for	Python	2	as	an	open
source	package.

Sometimes,	your	TestCase	classes	need	to	set	up	the	test	environment	before	running
test	methods.	To	do	this,	you	can	override	the	setUp	and	tearDown	methods.	These
methods	are	called	before	and	after	each	test	method,	respectively,	and	they	let	you	ensure
that	each	test	runs	in	isolation	(an	important	best	practice	of	proper	testing).	For	example,
here	I	define	a	TestCase	that	creates	a	temporary	directory	before	each	test	and	deletes
its	contents	after	each	test	finishes:
Click	here	to	view	code	image

class	MyTest(TestCase):

				def	setUp(self):

								self.test_dir	=	TemporaryDirectory()

				def	tearDown(self):

								self.test_dir.cleanup()

				#	Test	methods	follow

				#	…

I	usually	define	one	TestCase	for	each	set	of	related	tests.	Sometimes	I	have	one
TestCase	for	each	function	that	has	many	edge	cases.	Other	times,	a	TestCase	spans
all	functions	in	a	single	module.	I’ll	also	create	one	TestCase	for	testing	a	single	class
and	all	of	its	methods.

When	programs	get	complicated,	you’ll	want	additional	tests	for	verifying	the	interactions
between	your	modules,	instead	of	only	testing	code	in	isolation.	This	is	the	difference
between	unit	tests	and	integration	tests.	In	Python,	it’s	important	to	write	both	types	of
tests	for	exactly	the	same	reason:	You	have	no	guarantee	that	your	modules	will	actually
work	together	unless	you	prove	it.



Note

Depending	on	your	project,	it	can	also	be	useful	to	define	data-driven	tests	or
organize	tests	into	different	suites	of	related	functionality.	For	these	purposes,	code
coverage	reports,	and	other	advanced	use	cases,	the	nose
(http://nose.readthedocs.org/)	and	pytest	(http://pytest.org/)	open	source
packages	can	be	especially	helpful.

Things	to	Remember
	The	only	way	to	have	confidence	in	a	Python	program	is	to	write	tests.

	The	unittest	built-in	module	provides	most	of	the	facilities	you’ll	need	to	write
good	tests.

	You	can	define	tests	by	subclassing	TestCase	and	defining	one	method	per
behavior	you’d	like	to	test.	Test	methods	on	TestCase	classes	must	start	with	the
word	test.

	It’s	important	to	write	both	unit	tests	(for	isolated	functionality)	and	integration	tests
(for	modules	that	interact).

Item	57:	Consider	Interactive	Debugging	with	pdb
Everyone	encounters	bugs	in	their	code	while	developing	programs.	Using	the	print
function	can	help	you	track	down	the	source	of	many	issues	(see	Item	55:	“Use	repr
Strings	for	Debugging	Output”).	Writing	tests	for	specific	cases	that	cause	trouble	is
another	great	way	to	isolate	problems	(see	Item	56:	“Test	Everything	with	unittest”).

But	these	tools	aren’t	enough	to	find	every	root	cause.	When	you	need	something	more
powerful,	it’s	time	to	try	Python’s	built-in	interactive	debugger.	The	debugger	lets	you
inspect	program	state,	print	local	variables,	and	step	through	a	Python	program	one
statement	at	a	time.

In	most	other	programming	languages,	you	use	a	debugger	by	specifying	what	line	of	a
source	file	you’d	like	to	stop	on,	then	execute	the	program.	In	contrast,	with	Python	the
easiest	way	to	use	the	debugger	is	by	modifying	your	program	to	directly	initiate	the
debugger	just	before	you	think	you’ll	have	an	issue	worth	investigating.	There	is	no
difference	between	running	a	Python	program	under	a	debugger	and	running	it	normally.

To	initiate	the	debugger,	all	you	have	to	do	is	import	the	pdb	built-in	module	and	run	its
set_trace	function.	You’ll	often	see	this	done	in	a	single	line	so	programmers	can
comment	it	out	with	a	single	#	character.
Click	here	to	view	code	image

def	complex_func(a,	b,	c):

				#	…

				import	pdb;	pdb.set_trace()

As	soon	as	this	statement	runs,	the	program	will	pause	its	execution.	The	terminal	that

http://nose.readthedocs.org/
http://pytest.org/


started	your	program	will	turn	into	an	interactive	Python	shell.
Click	here	to	view	code	image

->	import	pdb;	pdb.set_trace()

(Pdb)

At	the	(Pdb)	prompt,	you	can	type	in	the	name	of	local	variables	to	see	their	values
printed	out.	You	can	see	a	list	of	all	local	variables	by	calling	the	locals	built-in
function.	You	can	import	modules,	inspect	global	state,	construct	new	objects,	run	the
help	built-in	function,	and	even	modify	parts	of	the	program—whatever	you	need	to	do
to	aid	in	your	debugging.	In	addition,	the	debugger	has	three	commands	that	make
inspecting	the	running	program	easier.

	bt:	Print	the	traceback	of	the	current	execution	call	stack.	This	lets	you	figure	out
where	you	are	in	your	program	and	how	you	arrived	at	the	pdb.set_trace
trigger	point.

	up:	Move	your	scope	up	the	function	call	stack	to	the	caller	of	the	current	function.
This	allows	you	to	inspect	the	local	variables	in	higher	levels	of	the	call	stack.

	down:	Move	your	scope	back	down	the	function	call	stack	one	level.

Once	you’re	done	inspecting	the	current	state,	you	can	use	debugger	commands	to	resume
the	program’s	execution	under	precise	control.

	step:	Run	the	program	until	the	next	line	of	execution	in	the	program,	then	return
control	back	to	the	debugger.	If	the	next	line	of	execution	includes	calling	a
function,	the	debugger	will	stop	in	the	function	that	was	called.

	next:	Run	the	program	until	the	next	line	of	execution	in	the	current	function,	then
return	control	back	to	the	debugger.	If	the	next	line	of	execution	includes	calling	a
function,	the	debugger	will	not	stop	until	the	called	function	has	returned.

	return:	Run	the	program	until	the	current	function	returns,	then	return	control
back	to	the	debugger.

	continue:	Continue	running	the	program	until	the	next	breakpoint	(or
set_trace	is	called	again).

Things	to	Remember
	You	can	initiate	the	Python	interactive	debugger	at	a	point	of	interest	directly	in	your
program	with	the	import	pdb;	pdb.set_trace()	statements.

	The	Python	debugger	prompt	is	a	full	Python	shell	that	lets	you	inspect	and	modify
the	state	of	a	running	program.

	pdb	shell	commands	let	you	precisely	control	program	execution,	allowing	you	to
alternate	between	inspecting	program	state	and	progressing	program	execution.



Item	58:	Profile	Before	Optimizing
The	dynamic	nature	of	Python	causes	surprising	behaviors	in	its	runtime	performance.
Operations	you	might	assume	are	slow	are	actually	very	fast	(string	manipulation,
generators).	Language	features	you	might	assume	are	fast	are	actually	very	slow	(attribute
access,	function	calls).	The	true	source	of	slowdowns	in	a	Python	program	can	be	obscure.

The	best	approach	is	to	ignore	your	intuition	and	directly	measure	the	performance	of	a
program	before	you	try	to	optimize	it.	Python	provides	a	built-in	profiler	for	determining
which	parts	of	a	program	are	responsible	for	its	execution	time.	This	lets	you	focus	your
optimization	efforts	on	the	biggest	sources	of	trouble	and	ignore	parts	of	the	program	that
don’t	impact	speed.

For	example,	say	you	want	to	determine	why	an	algorithm	in	your	program	is	slow.	Here,
I	define	a	function	that	sorts	a	list	of	data	using	an	insertion	sort:
Click	here	to	view	code	image

def	insertion_sort(data):

				result	=	[]

				for	value	in	data:

								insert_value(result,	value)

				return	result

The	core	mechanism	of	the	insertion	sort	is	the	function	that	finds	the	insertion	point	for
each	piece	of	data.	Here,	I	define	an	extremely	inefficient	version	of	the	insert_value
function	that	does	a	linear	scan	over	the	input	array:
Click	here	to	view	code	image

def	insert_value(array,	value):

				for	i,	existing	in	enumerate(array):

								if	existing	>	value:

												array.insert(i,	value)

												return

				array.append(value)

To	profile	insertion_sort	and	insert_value,	I	create	a	data	set	of	random
numbers	and	define	a	test	function	to	pass	to	the	profiler.
Click	here	to	view	code	image

from	random	import	randint

max_size	=	10**4

data	=	[randint(0,	max_size)	for	_	in	range(max_size)]

test	=	lambda:	insertion_sort(data)

Python	provides	two	built-in	profilers,	one	that	is	pure	Python	(profile)	and	another
that	is	a	C-extension	module	(cProfile).	The	cProfile	built-in	module	is	better
because	of	its	minimal	impact	on	the	performance	of	your	program	while	it’s	being
profiled.	The	pure-Python	alternative	imposes	a	high	overhead	that	will	skew	the	results.



Note

When	profiling	a	Python	program,	be	sure	that	what	you’re	measuring	is	the	code
itself	and	not	any	external	systems.	Beware	of	functions	that	access	the	network	or
resources	on	disk.	These	may	appear	to	have	a	large	impact	on	your	program’s
execution	time	because	of	the	slowness	of	the	underlying	systems.	If	your	program
uses	a	cache	to	mask	the	latency	of	slow	resources	like	these,	you	should	also
ensure	that	it’s	properly	warmed	up	before	you	start	profiling.

Here,	I	instantiate	a	Profile	object	from	the	cProfile	module	and	run	the	test
function	through	it	using	the	runcall	method:

profiler	=	Profile()

profiler.runcall(test)

Once	the	test	function	has	finished	running,	I	can	extract	statistics	about	its	performance
using	the	pstats	built-in	module	and	its	Stats	class.	Various	methods	on	a	Stats
object	adjust	how	to	select	and	sort	the	profiling	information	to	show	only	the	things	you
care	about.

stats	=	Stats(profiler)

stats.strip_dirs()

stats.sort_stats(‘cumulative’)

stats.print_stats()

The	output	is	a	table	of	information	organized	by	function.	The	data	sample	is	taken	only
from	the	time	the	profiler	was	active,	during	the	runcall	method	above.
Click	here	to	view	code	image

>>>

									20003	function	calls	in	1.812	seconds

			Ordered	by:	cumulative	time

			ncalls		tottime		percall		cumtime		percall	filename:lineno(function)

								1				0.000				0.000				1.812				1.812	main.py:34(<lambda>)

								1				0.003				0.003				1.812				1.812	main.py:10(insertion_sort)

				10000				1.797				0.000				1.810				0.000	main.py:20(insert_value)

					9992				0.013				0.000				0.013				0.000	{method	‘insert’	of	‘list’

objects}

								8				0.000				0.000				0.000				0.000	{method	‘append’	of	‘list’

objects}

								1				0.000				0.000				0.000				0.000	{method	‘disable’	of

‘_lsprof.Profiler’	objects}

Here’s	a	quick	guide	to	what	the	profiler	statistics	columns	mean:

	ncalls:	The	number	of	calls	to	the	function	during	the	profiling	period.

	tottime:	The	number	of	seconds	spent	executing	the	function,	excluding	time
spent	executing	other	functions	it	calls.

	tottime	percall:	The	average	number	of	seconds	spent	in	the	function	each
time	it	was	called,	excluding	time	spent	executing	other	functions	it	calls.	This	is
tottime	divided	by	ncalls.



	cumtime:	The	cumulative	number	of	seconds	spent	executing	the	function,
including	time	spent	in	all	other	functions	it	calls.

	cumtime	percall:	The	average	number	of	seconds	spent	in	the	function	each
time	it	was	called,	including	time	spent	in	all	other	functions	it	calls.	This	is
cumtime	divided	by	ncalls.

Looking	at	the	profiler	statistics	table	above,	I	can	see	that	the	biggest	use	of	CPU	in	my
test	is	the	cumulative	time	spent	in	the	insert_value	function.	Here,	I	redefine	that
function	to	use	the	bisect	built-in	module	(see	Item	46:	“Use	Built-in	Algorithms	and
Data	Structures”):
Click	here	to	view	code	image

from	bisect	import	bisect_left

def	insert_value(array,	value):

				i	=	bisect_left(array,	value)

				array.insert(i,	value)

I	can	run	the	profiler	again	and	generate	a	new	table	of	profiler	statistics.	The	new
function	is	much	faster,	with	a	cumulative	time	spent	that	is	nearly	100×	smaller	than	the
previous	insert_value	function.
Click	here	to	view	code	image

>>>

									30003	function	calls	in	0.028	seconds

			Ordered	by:	cumulative	time

			ncalls		tottime		percall		cumtime		percall	filename:lineno(function)

								1				0.000				0.000				0.028				0.028	main.py:34(<lambda>)

								1				0.002				0.002				0.028				0.028	main.py:10(insertion_sort)

				10000				0.005				0.000				0.026				0.000	main.py:112(insert_value)

				10000				0.014				0.000				0.014				0.000	{method	‘insert’	of	‘list’

objects}

				10000				0.007				0.000				0.007				0.000	{built-in	method	bisect_left}

								1				0.000				0.000				0.000				0.000	{method	‘disable’	of

‘_lsprof.Profiler’	objects}

Sometimes,	when	you’re	profiling	an	entire	program,	you’ll	find	that	a	common	utility
function	is	responsible	for	the	majority	of	execution	time.	The	default	output	from	the
profiler	makes	this	situation	difficult	to	understand	because	it	doesn’t	show	how	the	utility
function	is	called	by	many	different	parts	of	your	program.

For	example,	here	the	my_utility	function	is	called	repeatedly	by	two	different
functions	in	the	program:

def	my_utility(a,	b):

				#	…

def	first_func():

				for	_	in	range(1000):

								my_utility(4,	5)

def	second_func():

				for	_	in	range(10):



								my_utility(1,	3)

def	my_program():

				for	_	in	range(20):

								first_func()

								second_func()

Profiling	this	code	and	using	the	default	print_stats	output	will	generate	output
statistics	that	are	confusing.
Click	here	to	view	code	image

>>>

									20242	function	calls	in	0.208	seconds

			Ordered	by:	cumulative	time

			ncalls		tottime		percall		cumtime		percall	filename:lineno(function)

								1				0.000				0.000				0.208				0.208	main.py:176(my_program)

							20				0.005				0.000				0.206				0.010	main.py:168(first_func)

				20200				0.203				0.000				0.203				0.000	main.py:161(my_utility)

							20				0.000				0.000				0.002				0.000	main.py:172(second_func)

								1				0.000				0.000				0.000				0.000	{method	‘disable’	of

‘_lsprof.Profiler’	objects}

The	my_utility	function	is	clearly	the	source	of	most	execution	time,	but	it’s	not
immediately	obvious	why	that	function	is	called	so	much.	If	you	search	through	the
program’s	code,	you’ll	find	multiple	call	sites	for	my_utility	and	still	be	confused.

To	deal	with	this,	the	Python	profiler	provides	a	way	of	seeing	which	callers	contributed	to
the	profiling	information	of	each	function.

stats.print_callers()

This	profiler	statistics	table	shows	functions	called	on	the	left	and	who	was	responsible	for
making	the	call	on	the	right.	Here,	it’s	clear	that	my_utility	is	most	used	by
first_func:
Click	here	to	view	code	image

>>>

			Ordered	by:	cumulative	time

Function																															was	called	by…

																																											ncalls				tottime		cumtime

main.py:176(my_program)																<-

main.py:168(first_func)																<-						20					0.005				0.206		main.py:176(my_program)

main.py:161(my_utility)																<-			20000					0.202				0.202		main.py:168(first_func)

																																														200					0.002				0.002		main.py:172(second_func)

main.py:172(second_func)															<-						20					0.000				0.002		main.py:176(my_program)

Things	to	Remember
	It’s	important	to	profile	Python	programs	before	optimizing	because	the	source	of
slowdowns	is	often	obscure.

	Use	the	cProfile	module	instead	of	the	profile	module	because	it	provides
more	accurate	profiling	information.



	The	Profile	object’s	runcall	method	provides	everything	you	need	to	profile	a
tree	of	function	calls	in	isolation.

	The	Stats	object	lets	you	select	and	print	the	subset	of	profiling	information	you
need	to	see	to	understand	your	program’s	performance.

Item	59:	Use	tracemalloc	to	Understand	Memory	Usage
and	Leaks
Memory	management	in	the	default	implementation	of	Python,	CPython,	uses	reference
counting.	This	ensures	that	as	soon	as	all	references	to	an	object	have	expired,	the
referenced	object	is	also	cleared.	CPython	also	has	a	built-in	cycle	detector	to	ensure	that
self-referencing	objects	are	eventually	garbage	collected.

In	theory,	this	means	that	most	Python	programmers	don’t	have	to	worry	about	allocating
or	deallocating	memory	in	their	programs.	It’s	taken	care	of	automatically	by	the	language
and	the	CPython	runtime.	However,	in	practice,	programs	eventually	do	run	out	of
memory	due	to	held	references.	Figuring	out	where	your	Python	programs	are	using	or
leaking	memory	proves	to	be	a	challenge.

The	first	way	to	debug	memory	usage	is	to	ask	the	gc	built-in	module	to	list	every	object
currently	known	by	the	garbage	collector.	Although	it’s	quite	a	blunt	tool,	this	approach
does	let	you	quickly	get	a	sense	of	where	your	program’s	memory	is	being	used.

Here,	I	run	a	program	that	wastes	memory	by	keeping	references.	It	prints	out	how	many
objects	were	created	during	execution	and	a	small	sample	of	allocated	objects.
Click	here	to	view	code	image

#	using_gc.py

import	gc

found_objects	=	gc.get_objects()

print(‘%d	objects	before’	%	len(found_objects))

import	waste_memory

x	=	waste_memory.run()

found_objects	=	gc.get_objects()

print(‘%d	objects	after’	%	len(found_objects))

for	obj	in	found_objects[:3]:

				print(repr(obj)[:100])

>>>

4756	objects	before

14873	objects	after

<waste_memory.MyObject	object	at	0x1063f6940>

<waste_memory.MyObject	object	at	0x1063f6978>

<waste_memory.MyObject	object	at	0x1063f69b0>

The	problem	with	gc.get_objects	is	that	it	doesn’t	tell	you	anything	about	how	the
objects	were	allocated.	In	complicated	programs,	a	specific	class	of	object	could	be
allocated	many	different	ways.	The	overall	number	of	objects	isn’t	nearly	as	important	as
identifying	the	code	responsible	for	allocating	the	objects	that	are	leaking	memory.

Python	3.4	introduces	a	new	tracemalloc	built-in	module	for	solving	this	problem.



tracemalloc	makes	it	possible	to	connect	an	object	back	to	where	it	was	allocated.
Here,	I	print	out	the	top	three	memory	usage	offenders	in	a	program	using
tracemalloc:
Click	here	to	view	code	image

#	top_n.py

import	tracemalloc

tracemalloc.start(10)		#	Save	up	to	10	stack	frames

time1	=	tracemalloc.take_snapshot()

import	waste_memory

x	=	waste_memory.run()

time2	=	tracemalloc.take_snapshot()

stats	=	time2.compare_to(time1,	‘lineno’)

for	stat	in	stats[:3]:

				print(stat)

>>>

waste_memory.py:6:	size=2235	KiB	(+2235	KiB),	count=29981	(+29981),

average=76	B

waste_memory.py:7:	size=869	KiB	(+869	KiB),	count=10000	(+10000),	average=89

B

waste_memory.py:12:	size=547	KiB	(+547	KiB),	count=10000	(+10000),	average=56

B

It’s	immediately	clear	which	objects	are	dominating	my	program’s	memory	usage	and
where	in	the	source	code	they	were	allocated.

The	tracemalloc	module	can	also	print	out	the	full	stack	trace	of	each	allocation	(up
to	the	number	of	frames	passed	to	the	start	method).	Here,	I	print	out	the	stack	trace	of
the	biggest	source	of	memory	usage	in	the	program:
Click	here	to	view	code	image

#	with_trace.py

#	…

stats	=	time2.compare_to(time1,	‘traceback’)

top	=	stats[0]

print(‘\n’.join(top.traceback.format()))

>>>

File	“waste_memory.py”,	line	6

		self.x	=	os.urandom(100)

File	“waste_memory.py”,	line	12

		obj	=	MyObject()

File	“waste_memory.py”,	line	19

		deep_values.append(get_data())

File	“with_trace.py”,	line	10

		x	=	waste_memory.run()

A	stack	trace	like	this	is	most	valuable	for	figuring	out	which	particular	usage	of	a
common	function	is	responsible	for	memory	consumption	in	a	program.

Unfortunately,	Python	2	doesn’t	provide	the	tracemalloc	built-in	module.	There	are
open	source	packages	for	tracking	memory	usage	in	Python	2	(such	as	heapy),	though
they	do	not	fully	replicate	the	functionality	of	tracemalloc.



Things	to	Remember
	It	can	be	difficult	to	understand	how	Python	programs	use	and	leak	memory.

	The	gc	module	can	help	you	understand	which	objects	exist,	but	it	has	no
information	about	how	they	were	allocated.

	The	tracemalloc	built-in	module	provides	powerful	tools	for	understanding	the
source	of	memory	usage.

	tracemalloc	is	only	available	in	Python	3.4	and	above.
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deque	class	from,	166–167

OrderedDict	class	from,	167–168



collections.abc	module,	custom	containers	inheriting	from,	84–86

combination	function,	of	itertools	module,	170

Command-lines

correct	Python	version,	1,	2

starting	child	processes,	119–120

communicate	method

reading	child	process	output,	118–119

timeout	parameter	with,	121

Community-built	modules,	Python	Package	Index	for,	173–174

Complex	expressions,	helper	functions	and,	8–10

Concurrency

coroutines	and,	137–138

defined,	117

in	pipelines,	129–132

Queue	class	and,	132–136

concurrent.futures	built-in	module,	enabling	parallelism,	146–148

configparser	built-in	module,	for	production	configuration,	201

Containers

inheriting	from	collections.abc,	84–86

iterable,	41–42

contextlib	built-in	module,	enabling	with	statements,	154–155

contextmanager	decorator

purpose	of,	154

as	targets	and,	155–156

continue	command,	of	interactive	debugger,	209

Conway’s	Game	of	Life,	coroutines	and,	138–143

Coordinated	Universal	Time	(UTC),	in	time	conversions,	162–165

copyreg	built-in	module

adding	missing	attribute	values,	159–160

controlling	pickle	behavior,	158

providing	stable	import	paths,	161–162

versioning	classes	with,	160–161



Coroutines

in	Conway’s	Game	of	Life,	138–143

purpose	of,	137–138

in	Python	2,	143–145

count	method,	for	custom	container	types,	85–86

cProfile	module,	for	accurate	profiling,	210–213

CPU	(central	processing	unit)

bottleneck	difficulties,	145–146

time,	threads	wasting,	131–132

usage,	child	processes	and,	118–121

CPython	interpreter,	effect	of	GIL	on,	122–123

CPython	runtime

memory	management	with,	214

cumtime	column,	in	profiler	statistics,	211

cumtime	percall	column,	in	profiler	statistics,	211

cycle	function,	of	itertools	module,	170

D
Data	models,	@property	improving,	91–95

Data	races,	Lock	preventing,	126–129

datetime	built-in	module,	for	time	conversions,	164–166

deactivate	command,	disabling	pyvenv	tool,	195–196

Deadlocks,	timeout	parameter	avoiding,	121

Deallocation	of	memory,	tracemalloc	managing,	214–216

Debuggers,	decorator	problems	with,	151,	153

Debugging

interactive,	with	pdb	module,	208–209

memory	usage,	214–216

print	function	and,	202

repr	strings	for,	202–204

root	exceptions	for,	185–186

Decimal	class,	for	numerical	precision,	171–173



Decorators,	functionality	of,	151–153

functools,	151–153

Default	arguments

approach	to	serialization,	159–160

namedtuple	classes	and,	59

using	dynamic	values	for,	48–51

Default	value	hooks,	62–64

defaultdict	using,	62–64

Default	values

copyreg	built-in	module	and,	159–160

of	keyword	arguments,	46–47

defaultdict	class,	for	dictionaries,	168

Dependencies

circular,	187–192

reproducing,	196–197

transitive,	192–194

Dependency	injection,	191

Deployment	environments,	module-scoped	code	for,	199–201

deque	class,	as	double-ended	queue,	166–167

Descriptors

enabling	reusable	property	logic,	90

in	modifying	class	properties,	112–115

for	reusable	@property	methods,	97–100

Deserializing	objects

default	attribute	values	and,	159–160

pickle	built-in	module	for,	157–158

stable	import	paths	and,	161–162

Development	environment,	unique	configurations/assumptions	for,	199–201

Diamond	inheritance,	initializing	parent	classes	and,	70–71

__dict__	attribute,	viewing	object	internals,	204

Dictionaries

bookkeeping	with,	55–58



comprehension	expressions	in,	16

default,	168

ordered,	167–168

translating	related	objects	into,	74–75

__doc__	special	attribute,	retrieving	docstrings,	175–176

Docstrings

class-level,	177

documenting	default	behavior	in,	48–51

for	functions,	178–179

importance/placement	of,	175–176

module,	176–177

doctest	built-in	module,	179

Documentation

docstrings	for.	See	Docstrings

importance	of,	175

Documentation-generation	tools,	176

Double-ended	queues,	deque	classes	as,	166–167

__double_leading_underscore	format,	3

down	command,	of	interactive	debugger,	209

dropwhile	function,	of	itertools	module,	170

Dynamic	imports

avoiding,	192

resolving	circular	dependencies,	191–192

Dynamic	state,	defined,	55

E
else	blocks

after	for/while	loops,	23–25

during	exception	handling,	26–27

end	indexes,	in	slicing	sequences,	10–13

__enter__	method,	in	defining	new	classes,	154

enumerate	built-in	function,	preferred	features	of,	20–21



environ	dictionary,	tailoring	modules	with,	201

eval	built-in	function,	for	re-creating	original	values,	203

Exceptions

raising,	29–31

root,	184–187

try/finally	blocks	and,	26–28

Execution	time,	optimization	of,	209–213

__exit__	method,	in	defining	new	classes,	154

Expressions

in	list	comprehensions,	16–18

PEP	8	guidance	for,	4

F
filter	built-in	function,	list	comprehensions	vs.,	15–16

filterfalse	function,	of	itertools	module,	170

finally	blocks,	during	exception	handling,	26–27

First-in-first-out	queues,	deque	class	for,	166–167

for	loops

else	blocks	after,	23–25

iterator	protocol	and,	40–42

Fraction	class,	for	numerical	precision,	172

Functions

closure/variable	scope	interaction,	31–36

decorated,	151–153

docstrings	for,	178–179

exceptions	vs.	return	None,	29–31

as	first-class	objects,	32,	63–64

generator	vs.	returning	lists,	36–38

iterating	over	arguments,	38–42

keyword	arguments	for,	45–48

keyword-only	arguments	for,	51–54

optional	positional	arguments	for,	43–45



for	simple	interfaces,	61–64

simultaneous,	coroutines	for,	137–138

functools	built-in	module,	for	defining	decorators,	152–153

G
Game	of	Life,	coroutines	in,	138–143

Garbage	collector,	cleanup	by,	99

gc	built-in	module,	debugging	memory	usage,	214–215

Generator(s)

coroutine	extensions	of,	137–138

expressions,	for	large	comprehensions,	18–20

returning	lists	vs.,	36–38

Generic	class	method,	for	constructing	objects,	67–69

Generic	functionality,	with	mix-in	classes,	74–78

__get__	method,	for	descriptor	protocol,	97–100

__getattr__	special	method,	to	lazily	load	attributes,	100–103

__getattribute__	method,	accessing	instance	variables	in,	104–105

__getattribute__	method,	descriptor	protocol	and,	98–100

__getattribute__	special	method,	for	repeated	access,	102–105

__getitem__	special	method

custom	implementation	of,	84–86

in	slicing	sequences,	10

Getter	methods

descriptor	protocol	for,	98–100

problems	with	using,	87–88

providing	with	@property,	88–89

GIL	(global	interpreter	lock)

corruption	of	data	structures	and,	126–127

defined,	122

preventing	parallelism	in	threads,	122–125,	145,	146–147

Global	scope,	33

H



hasattr	built-in	function,	determining	existence	of	properties,	103

hashlib	built-in	module,	120

heappop	function,	for	priority	queues,	168–169

heappush	function,	for	priority	queues,	168–169

heapq	module,	for	priority	queues,	168–169

help	function

decorator	problems	with,	152–153

in	interactive	debugger,	208

Helper	classes

for	bookkeeping,	58–60

providing	stateful	closure	behavior,	62–63

Helper	functions,	complex	expressions	into,	8–10

Hooks

to	access	missing	attributes,	100–105

default	value,	62–64

functions	acting	as,	61–62

in	modifying	class	properties,	113

I
IEEE	754	(IEEE	Standard	for	Floating-Point	Arithmetic),	171–172

if/else	expressions,	for	simplification,	9–10

import	*	statements

avoiding,	183–184

in	providing	stable	APIs,	182–183

Import	paths,	stable,	copyreg	providing,	161–162

Import	reordering,	for	circular	dependencies,	189–190

import	statements

as	dynamic	imports,	191–192

with	packages,	180–181

Incrementing	in	place,	public	attributes	for,	88

index	method,	for	custom	container	types,	85–86

Infinite	recursion,	super()	function	avoiding,	101–105



Inheritance

from	collections.abc,	84–86

method	resolution	order	(MRO)	and,	71

multiple,	for	mix-in	utility	classes,	77–78

__init__	method

as	single	constructor	per	class,	67,	69

initializing	parent	class,	69–71
__init__.py

defining	packages,	180

modifying,	182

Initializing	parent	classes

__init__	method	for,	69–71

method	resolution	order	(MRO)	and,	71

super	built-in	function	for,	70–73

Integration	tests,	207

Interactive	debugging,	with	pdb,	208–209

Intermediate	root	exceptions,	future-proofing	APIs,	186–187

I/O	(input/output)

between	child	processes,	118–121

threads	for	blocking	I/O,	124–125

IOError,	except	blocks	and,	26–27

IronPython	runtime,	1,	2
isinstance

bytes/str/unicode	and,	5–6

with	coroutines,	142

dynamic	type	inspection	with,	74–75

metaclasses	and,	114

pickle	module	and,	158

testing	and,	205

islice	function,	of	itertools	module,	170

iter	built-in	function,	41–42

__iter__	method



as	generator,	41–42

iterable	container	class,	defined,	41–42

Iterator	protocol,	40–42

Iterators

as	function	arguments,	39

generators	returning,	37–38

zip	function	processing,	21–23

itertools	built-in	module

functions	of,	169–170

izip_longest	function,	for	iterating	in	parallel,	23

J
join	method,	of	Queue	class,	132–136

Jython	runtime,	1,	2

K
Keyword	arguments

constructing	classes	with,	58

dynamic	default	argument	values,	48–51

providing	optional	behavior,	45–48

Keyword-only	arguments

for	clarity,	51–53

in	Python	2,	53–54

L
lambda	expression

as	key	hook,	61

vs.	list	comprehensions,	15–16

producing	iterators	and,	40

in	profiling,	210–212

Language	hooks,	for	missing	attributes,	100–105

Lazy	attributes,	__getattr__/__setattr__/__getattribute__	for,	100–105

_leading_underscore	format,	3



Leaky	bucket	quota,	implementing,	92–95

len	built-in	function,	for	custom	sequence	types,	85

__len__	special	method,	for	custom	sequence	types,	85

list	built-in	type,	performance	as	FIFO	queue,	166–167

List	comprehensions

generator	expressions	for,	18–20

instead	of	map/filter,	15–16

number	of	expressions	in,	16–18

list	type,	subclassing,	83–84

Lists,	slicing,	10–13

locals	built-in	function,	152,	208

localtime	function,	from	time	module,	163–164

Lock	class

preventing	data	races,	126–129

in	with	statements,	153–154

Logging

debug	function	for,	154–156

severity	levels,	154–155

Loops

else	blocks	after,	23–25

in	list	comprehensions,	16–18

range/enumerate	functions,	20–21

lowercase_underscore	format,	3

M
map	built-in	function,	list	comprehensions	vs.,	15–16

Memory

coroutine	use	of,	137

threads	requiring,	136

Memory	leaks

by	descriptor	classes,	99–100

identifying,	214–216



Memory	management,	with	tracemalloc	module,	214–216

Meta.__new__	method

in	metaclasses,	107

setting	class	attributes,	114

__metaclass__	attribute,	in	Python	2,	106–107

Metaclasses

annotating	attributes	with,	112–115

for	class	registration,	108–112

defined,	87,	106

validating	subclasses,	105–108

method	resolution	order	(MRO),	for	superclass	initialization	order,	70–73

Mix-in	classes

composing	from	simple	behaviors,	74–75

defined,	73–74

pluggable	behaviors	for,	75–76

utility,	creating	hierachies	of,	77–78

mktime,	for	time	conversion,	163,	165

Mock	functions	and	classes

unittest.mock	built-in	module,	206

__module__	attribute,	106,	153

Modules

breaking	circular	dependencies	in,	187–192

community-built,	173–174

docstrings,	176–177

packages	for	organizing,	179–184

providing	stable	APIs	from,	181–184

tailoring	for	deployment	environment,	199–201

Module-scoped	code,	for	deployment	environments,	199–201

MRO	(method	resolution	order),	for	superclass	initialization	order,	70–73

Multiple	conditions,	in	list	comprehensions,	16–18

Multiple	inheritance,	for	mix-in	utility	classes,	73–78

Multiple	iterators,	zip	built-in	function	and,	21–23



Multiple	loops,	in	list	comprehensions,	16–18

multiprocessing	built-in	module,	enabling	parallelism,	146–148

Mutual-exclusion	locks	(mutex)

GIL	as,	122

Lock	class	as,	126–129

in	with	statements,	153–154

N
__name__	attribute	in	defining	decorators,	151,	153

in	registering	classes,	109–110

testing	and,	206

namedtuple	type

defining	classes,	58

limitations	of,	59

NameError	exception,	33

Namespace	packages,	with	Python	3.4,	180

Naming	conflicts,	private	attributes	to	avoid,	81–82

Naming	styles,	3–4

ncalls	column	in	profiler	statistics,	211

__new__	method,	of	metaclasses,	106–108

next	built-in	function,	41–42

next	command,	of	interactive	debugger,	209

__next__	special	method,	iterator	object	implementing,	41

Noise	reduction,	keyword	arguments	and,	45–48

None	value

functions	returning,	29–31

specifying	dynamic	default	values,	48–51

nonlocal	statement,	in	closures	modifying	variables,	34–35

nsmallest	function,	for	priority	queues,	168–169

Numerical	precision,	with	Decimal	class,	171–173

O
Objects,	accessing	missing	attributes	in,	100–105



On-the-fly	calculations,	using	@property	for,	91–95

Optimization,	profiling	prior	to,	209–213

Optional	arguments

keyword,	47–48

positional,	43–45

OrderedDict	class,	for	dictionaries,	167–168

OverflowError	exceptions,	51

P
Packages

dividing	modules	into	namespaces,	180–181

as	modules	containing	modules,	179–180

providing	stable	APIs	with,	181–184

Parallelism

avoiding	threads	for,	122–123

child	processes	and,	118–121

concurrent.futures	for	true,	146–148

corruption	of	data	structures	and,	126–128

defined,	117

need	for,	145–146

Parent	classes

accessing	private	attributes	of,	79–81

initializing,	70–73

pdb	built-in	module,	for	interactive	debugging,	208–209

pdb.set_trace()	statements,	208–209

PEP	8	(Python	Enhancement	Proposal	#8)	style	guide

expression/statement	rules,	4

naming	styles	in,	3–4,	80

overview	of,	2–3

whitespace	rules,	3

permutations	function,	of	itertools	module,	170

pickle	built-in	module



adding	missing	attribute	values,	159–160

providing	stable	import	paths	for,	161–162

serializing/deserializing	objects,	157–158

versioning	classes	for,	160–161

pip	command-line	tool

reproducing	environments,	196–197

transitive	dependencies	and,	192–193

for	utilizing	Package	Index,	173

pip	freeze	command,	saving	package	dependencies,	196

Pipelines

concurrency	in,	129–131

problems	with,	132

Queue	class	building,	132–136

Polymorphism

@classmethods	utilizing,	65–69

defined,	64

Popen	constructor,	starting	child	processes,	118

Positional	arguments

constructing	classes	with,	58

keyword	arguments	and,	45–48

reducing	visual	noise,	43–45

print	function,	for	debugging	output,	202–203,	208

print_stats	output,	for	profiling,	213

Printable	representation,	repr	function	for,	202–204

Private	attributes

accessing,	78–80

allowing	subclass	access	to,	81–83

indicating	internal	APIs,	80

ProcessPoolExecutor	class,	enabling	parallelism,	147–148

product	function,	of	itertools	module,	170

Production	environment,	unique	configurations	for,	199–201

profile	module,	liabilities	of,	210



@property	method

defining	special	behavior	with,	88–89

descriptors	for	reusing,	97–100

giving	attributes	new	functionality,	91–94

improving	data	models	with,	95

numerical	attributes,	into	on-the-fly	calculations,	91–95

problems	with	overusing,	95–96

unexpected	side	effects	in,	90–91

@property.setter,	modifying	object	state	in,	91

pstats	built-in	module,	extracting	statistics,	211

Public	attributes

accessing,	78

defining	new	class	interfaces	with,	87–88

giving	new	functionality	to,	91–94

preferred	features	of,	80–82

Pylint	tool,	for	Python	source	code,	4

PyPI	(Python	Package	Index),	for	community-built	modules,	173–174

PyPy	runtime,	1,	2

Python	2

coroutines	in,	143–145

determining	use	of,	2

keyword-only	arguments	in,	53–54

metaclass	syntax	in,	106–107

mutating	closure	variables	in,	35

str	and	unicode	in,	5–7

zip	built-in	function	in,	22

Python	3

class	decorators	in,	111

determining	use	of,	2

closures	and	nonlocal	statements	in,	34–35

keyword-only	arguments	in,	51–53

metaclass	syntax	in,	106



str	and	bytes	in,	5–7

Python	Enhancement	Proposal	#8.	See	PEP	8	(Python	Enhancement	Proposal	#8)	style
guide

Python	Package	Index	(PyPI),	for	community-built	modules,	173–174

Python	threads.	See	Threads

pytz	module

installing,	173

pyvenv	tool	and,	194

for	time	conversions,	165–166

pyvenv	command-line	tool

purpose	of,	194

reproducing	environments,	196–197

for	virtual	environments,	194–196

Q
quantize	method,	of	Decimal	class,	for	numerical	data,	172

Queue	class,	coordinating	work	between	threads,	132–136

R
range	built-in	function,	in	loops,	20

Read	the	Docs	community-funded	site,	176

Refactoring	attributes,	@property	instead	of,	91–95

Refactoring	code,	for	circular	dependencies,	189

Registering	classes,	metaclasses	for,	108–112

Repetitive	code

composing	mix-ins	to	minimize,	74

keyword	arguments	eliminating,	45–48

__repr__	special	method,	customizing	class	printable	representation,	203–204

repr	strings,	for	debugging	output,	202–204

requirements.txt	file,	for	installing	packages,	197

return	command,	of	interactive	debugger,	209

return	statements

in	generators,	140



not	allowed	in	Python	2	generators,	144

Root	exceptions

finding	bugs	in	code	with,	185–186

future-proofing	APIs,	186–187

insulating	callers	from	APIs,	184–185

Rule	of	least	surprise,	87,	90,	91

runcall	method,	for	profiling,	211–213

S
Scopes,	variable,	closure	interaction	with,	31–36

Scoping	bug,	in	closures,	34

select	built-in	module,	blocking	I/O,	121,	124

Serializing,	data	structures,	109

Serializing	objects,	pickle	and

default	argument	approach	to,	159–160

default	attribute	values	and,	159–160

pickle	built-in	module	for,	157–158

stable	import	paths	and,	161–162

__set__	method,	for	descriptor	protocol,	97–100

set_trace	function,	pdb	module	running,	208–209

setattr	built-in	function

annotating	class	attributes	and,	113

in	bad	thread	interactions,	127–128

lazy	attributes	and,	101–102,	104

__setattr__	special	method,	to	lazily	set	attributes,	103–105

__setitem__	special	method,	in	slicing	sequences,	10

Sets,	comprehension	expressions	in,	16

setter	attribute,	for	@property	method,	88–89

Setter	methods

descriptor	protocol	for,	98–100

liability	of	using,	87–88

providing	with	@property,	88–89



setuptools,	in	virtual	environments,	195–197

Single	constructor	per	class,	67,	69

Single-line	expressions,	difficulties	with,	8–10

six	tool,	in	adopting	Python	3,	2

Slicing	sequences

basic	functions	of,	10–13

stride	syntax	in,	13–15

Sort,	key	argument,	closure	functions	as,	31–32

source	bin/activate	command,	enabling	pyvenv	tool,	195

Speedup,	concurrency	vs.	parallelism	for,	117

Star	args	(*args),	43

start	indexes,	in	slicing	sequences,	10–13

Statements,	PEP	8	guidance	for,	4

Static	type	checking,	lack	of,	204–205

Stats	object,	for	profiling	information,	211–213

step	command,	of	interactive	debugger,	209

StopIteration	exception,	39,	41

str	instances,	for	character	sequences,	5–7

stride	syntax,	in	slicing	sequences,	13–15

strptime	functions,	conversion	to/from	local	time,	163–164

Subclasses

allowing	access	to	private	fields,	81–83

constructing/connecting	generically,	65–69

list	type,	83–84

TestCase,	206–207

validating	with	metaclasses,	105–108

subprocess	built-in	module,	for	child	processes,	118–121

super	built-in	function,	initializing	parent	classes,	71–73

super	method,	avoiding	infinite	recursion,	101–105

Superclass	initialization	order,	MRO	resolving,	70–73

Syntax

decorators,	151–153



for	closures	mutating	variables,	34–35

for	keyword-only	arguments,	52–53

loops	with	else	blocks,	23

list	comprehensions,	15

metaclasses,	106

slicing,	10–13

SyntaxError	exceptions,	dynamic	imports	and,	192

sys	module,	guiding	module	definitions,	201

System	calls,	blocking	I/O	and,	124–125

T
takewhile	function,	of	itertools	module,	170

task_done	call,	method	of	the	Queue	class,	in	building	pipelines,	134

tee	function,	of	itertools	module,	170

Test	methods,	206–207

TestCase	classes,	subclassing,	206–207

threading	built-in	module,	Lock	class	in,	126–129

ThreadPoolExecutor	class,	not	enabling	parallelism,	147–148

Threads

blocking	I/O	and,	124–125

coordinating	work	between,	132–136

parallelism	prevented	by,	122–123,	145,	146–147

preventing	data	races	between,	126–129

problems	with,	136

usefulness	of	multiple,	124

time	built-in	module,	limitations	of,	163–164

Time	zone	conversion	methods,	162–166

timeout	parameter,	in	child	process	I/O,	121

tottime	column,	in	profiler	statistics,	211

tottime	percall	column,	in	profiler	statistics,	211

tracemalloc	built-in	module,	for	memory	optimization,	214–216

Transitive	dependencies,	192–194



try/except	statements,	root	exceptions	and,	185

try/except/else/finally	blocks,	during	exception	handling,	27–28

try/finally	blocks

during	exception	handling,	26–27

with	statements	providing	reusable,	154–155

Tuples

extending,	58

rules	for	comparing,	32

as	values,	57

variable	arguments	becoming,	44

zip	function	producing,	21–23

TypeError

exceptions,	for	keyword-only	arguments,	53–54

rejecting	iterators,	41–42

tzinfo	class,	for	time	zone	operations,	164–165

U
unicode	instances,	for	character	sequences,	5–7

Unit	tests,	207

unittest	built-in	module,	for	writing	tests,	205–207

UNIX	timestamp,	in	time	conversions,	163–165

Unordered	dictionaries,	167

up	command,	of	interactive	debugger,	209

UTC	(Coordinated	Universal	Time),	in	time	conversions,	162–165

Utility	classes,	mix-in,	creating	hierarchies	of,	77–78

V
Validation	code,	metaclasses	running,	105–108

ValueError	exceptions,	30–31,	184

Values

from	iterators,	40–42

tuples	as,	57

validating	assignments	to,	89



Variable	positional	arguments

keyword	arguments	and,	47–48

reducing	visual	noise,	43–45

Variable	scopes,	closure	interaction	with,	31–36

--version	flag,	determining	version	of	Python,	1–2

Virtual	environments

pyvenv	tool	creating,	194–196

reproducing,	196–197

virtualenv	command-line	tool,	194

Visual	noise,	positional	arguments	reducing,	43–45

W
WeakKeyDictionary,	purpoose	of,	99

weakref	module,	building	descriptors,	113

while	loops,	else	blocks	following,	23–25

Whitespace,	importance	of,	3

Wildcard	imports,	183

with	statements

mutual-exclusion	locks	with,	153–154

for	reusable	try/finally	blocks,	154–155

as	target	values	and,	155–156

wraps	helper	function,	from	functools,	for	defining	decorators,	152–153

Y
yield	expression

in	coroutines,	137–138

in	generator	functions,	37

use	in	contextlib,	155

yield	from	expression,	unsupported	in	Python	2,	144

Z
ZeroDivisionError	exceptions,	30–31,	51

zip	built-in	function



for	iterators	of	different	lengths,	170

processing	iterators	in	parallel,	21–23

zip_longest	function,	for	iterators	of	different	length,	22–23,	170







Code	Snippets
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